• 제목/요약/키워드: cracks pattern

검색결과 181건 처리시간 0.025초

가스함유퇴적물의 음향특성: 한국 진해만의 예비결과 (Acoustic Properties of Gassy Sediments: Preliminary Result of Jinhae Bay, Korea)

  • 김길영;김대철;여정윤;유동근
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권1E호
    • /
    • pp.33-38
    • /
    • 2007
  • Compressional wave velocity and shear wave velocity were measured for gassy sediments collected from Jinhae Bay, Korea. To distinguish inhomogeneities of gassy sediments, Computed Tomography (CT) was carried out for gassy sediment using CT Scanner. The cored sediments are composed of homogeneous and soft mud (greater than $8{\Phi}$ in mean grain size) containing clay content more than 50%. In depth interval of gassy sediments, compressional wave velocity is significantly decreased from 1480m/s to 1360m/s, indicating that the gas greatly affects compressional wave velocity due to a gas and/or degassing cracks. Shear wave velocity shows a slight increasing pattern from ${\sim}55\;m/s$ in the upper part of the core to ${\sim}58\;m/s$ at 320 cm depth, and then decreases to ${\sim}54\;m/s$ in the lower part of the core containing a small amount of gas. But shear wave velocity in the gassy sediments is slightly greater than that of non-gassy sediments in the upper part of the core. Thus, the Vp/Vs ratio is decreased (from 30 to 25) in gas charged zone. The Vp/Vs ratio is well correlated with shear wave velocity, but no correlation with compressional wave velocity. This suggests that low concentrations of gas have little affects on shear wave velocity. By CT images, the gas in the sediments is mostly concentrated around inner edge of core liner due to a long duration after sediment collection.

이미지 분석기법을 이용한 콘크리트 구조물의 균열 검출 시스템 개발 (Development of Automatic Crack Detection System for Concrete Structure Using Image Processing Method)

  • 이호범;김종우;장일영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.64-77
    • /
    • 2012
  • 본 연구에서는 디지털 이미지 분석기술을 이용하여 콘크리트 구조물의 대표적인 열화인자인 콘크리트의 균열을 검지할 수 있는 기술을 개발하기 위해 형태수리학에 근거한 모폴로지 기법이 도입된 이미지 분석기법을 적용한 균열검출 시스템을 개발하였다. 개발된 시스템에는 분석결과의 효율적인 관리를 고려하여 촬영된 다수의 이미지를 하나의 전체 이미지로 재구성하는 이미지 조합기술이 추가로 적용되었다. 그리고 개발된 시스템의 적용성 및 신뢰도 검증은 균열이 발생된 콘크리트 암거를 이용한 현장검증 실험을 통해 이루어졌으며, 실험에 사용된 촬영장비로는 40m까지 0.2mm의 균열을 검지할 수 있는 성능을 확인하였다. 이미지 분석을 통해 산정된 균열폭의 경우 실측 균열폭과의 차이가 최대 0.08mm로 나타나 일정 수준 이상의 정확도를 구명하였고, 이미지 조합의 경우 추상 패턴 이미지 면에 대한 분할 촬영 이미지를 조합한 결과 실제 전체촬영 원본 이미지와 육안으로 차이를 확인할 수 없을 정도로 우수한 조합결과를 도출하였다.

Assessment of different pretreatments to breakage dormancy and improve the seed germination in Elaeocarpus serratus L. - an underutilized multipurpose fruit tree from South India

  • Raji, R.;Siril, E.A.
    • Forest Science and Technology
    • /
    • 제14권4호
    • /
    • pp.160-168
    • /
    • 2018
  • The seeds of Elaeocarpus serratus, a tropical underutilized fruit tree are characterized by hard seed coat and consequent poor water uptake and low germination. To improve the regeneration through seeds, various parameters such as viability of seeds, water uptake, and effect of seed mass on germination and pretreatments were performed using a completely randomized design (CRD). Tetrazolium (TZ) test was conducted using fresh, mature seeds revealed $50{\pm}2.56%$ mean viability. Seeds of different weight classes showed similar pattern of water uptake and the saturation level was achieved at 60 hrs of soaking. Seeds belong to weight class 2.6-3.5g were germinated ($12.5{\pm}1.26%$) with $175{\pm}1.75days$ (d) of mean time taken for germination (MTG). Germination capacity of seeds varied significantly among different populations and Varkala population gave $12.5{\pm}1.1%$ germination with $174.6{\pm}2.5d$ MTG. Among various seed treatments, mechanical scarification was superior in germination and significant reduction in MTG ($p{\leq}0.05$). The mechanical scarification by complete removal of seed coat resulted in $49.2{\pm}1.52%$ germination within a short period of time ($9.52{\pm}0.89d$ MTG). However, the complete removal of seed coat without damaging to embryo is a difficult task. An alternate treatment (Mechanical scarification II) by making cracks on nut faces vertically followed by soaking in distilled water for 24 hrs gave $48.4{\pm}1.73%$ germination with significantly reduced MTG ($12.14{\pm}0.56d$) over unsoaked, untreated control ($6.5{\pm}1.84%$ germination and $197.18{\pm}1.79d$ MTG; $p{\leq}0.05$). This treatment (Mechanical scarification II) is therefore recommended for E. serratus seeds as it can adopt easily and can achieve 7 fold increases in germination over control. The recorded germination through mechanical scarification is in tune with realized viability percentage of the seeds.

고출력 백색 광원용 Y3Al5O12;Ce3+,Pr3+ 투명 세라믹 형광체의 광학특성 (Optical Properties of Y3Al5O12;Ce3+,Pr3+ Transparent Ceramic Phosphor for High Power White Lighting)

  • 강태욱;임석규;김종수;정용석
    • 한국재료학회지
    • /
    • 제29권2호
    • /
    • pp.116-120
    • /
    • 2019
  • We prepared $Y_3Al_5O_{12};Ce^{3+},Pr3^{+}$ transparent ceramic phosphor using a solid state reaction method. By XRD pattern analysis and SEM measurement, our phosphors reveal an Ia-3d(230) space group of cubic structure, and the transparent ceramic phosphor has a polycrystal state with some internal cracks and pores. In the Raman scattering measurement with an increasing temperature, lattice vibrations of the transparent ceramic phosphor decrease due to its more perfect crystal structure and symmetry. Thus, low phonon generation is possible at high temperature. Optical properties of the transparent ceramic phosphor have broader excitation spectra due to a large internal reflection. There is a wide emission band from the green to yellow region, and the red color emission between 610 nm and 640 nm is also observed. The red-yellow phosphor optical characteristics enable a high Color Rendering Index (CRI) in combination with blue emitting LED or LD. Due to its good thermal properties of low phonon generation at high temperature and a wide emission range for high CRI characteristics, the transparent ceramic phosphor is shown to be a good candidate for high power solid state white lighting.

Investigation of shear behavior of soil-concrete interface

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi;Masoumi, Alireza
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.81-90
    • /
    • 2019
  • The shear behavior of soil-concrete interface is mainly affected by the surface roughness of the two contact surfaces. The present research emphasizes on investigating the effect of roughness of soil-concrete interface on the interface shear behavior in two-layered laboratory testing samples. In these specially prepared samples, clay silt layer with density of $2027kg/m^3$ was selected to be in contact a concrete layer for simplifying the laboratory testing. The particle size testing and direct shear tests are performed to determine the appropriate particles sizes and their shear strength properties such as cohesion and friction angle. Then, the surface undulations in form of teeth are provided on the surfaces of both concrete and soil layers in different testing carried out on these mixed specimens. The soil-concrete samples are prepared in form of cubes of 10*10*30 cm. in dimension. The undulations (inter-surface roughness) are provided in form of one tooth or two teeth having angles $15^{\circ}$ and $30^{\circ}$, respectively. Several direct shear tests were carried out under four different normal loads of 80, 150, 300 and 500 KPa with a constant displacement rate of 0.02 mm/min. These testing results show that the shear failure mechanism is affected by the tooth number, the roughness angle and the applied normal stress on the sample. The teeth are sheared from the base under low normal load while the oblique cracks may lead to a failure under a higher normal load. As the number of teeth increase the shear strength of the sample also increases. When the tooth roughness angle increases a wider portion of the tooth base will be failed which means the shear strength of the sample is increased.

외적 포스트텐셔닝 보강에서 데비에이터의 위치에 따른 전단보강효과 (Shear Strengthening Effect by Deviator Location in Externally Post-tensioning Reinforcement)

  • 이수헌;신경재;이희두
    • 대한건축학회논문집:구조계
    • /
    • 제34권6호
    • /
    • pp.3-10
    • /
    • 2018
  • This paper described the shear strengthening effect by deviator location in pre-damaged reinforced concrete (RC) beams strengthened with externally post-tensioning steel rods. Three reinforced concrete beams as control beam and eight post-tensioned beams using external steel rods were tested to fail in shear. The externally post-tensioning material was a steel rod of 22 mm diameter, and it had a 655 MPa yield strength and an 805 MPa tensile strength. Specimens depend on multiple variables, such as the number of deviators, location of deviator, and load pattern. The pre-damaged loads up to about 2/3 of ultimate shear capacities were applied to specimens using displacement control and the diagonal shear crack just occurred at these loading levels. And then, the post-tensioning up to when a strain of steel rod reaches about $2000{\mu}{\varepsilon}$ was continuously applied to beam. A displacement control was changed to a load control during post-tensioning. The post-tensioning resulted in increase of load-carrying capacity and restoration of existing deflection. Also, it prevented the existing diagonal cracks from excessively growing. Two deviators effectively improved the load capacity when compared with in case of test which one deviator at mid-span installed. When deviators were located near region which the diagonal crack occurred on, the strengthening impact by post-tensioning was greater.

유한 요소 해석을 이용한 DED 공정의 코너 반경 및 위치에 따른 보수 영역 부근 잔류응력 분포 영향성 조사 (Investigation of the Influence of Radius and Corner Position on the Residual Stress Distribution in the Vicinity of the Repaired Region via Directed Energy Deposition by using Finite Element Analysis)

  • 알리예브 알리술탄;이광규;안동규
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.33-40
    • /
    • 2021
  • Current industrial flow is directed toward reducing the usage of raw materials by reusing parts, which is referred to as a circular economy (CE). Repair is one of the most value-added approaches in CE, which can be efficiently accomplished via additive manufacturing. The repair technology of metallic parts via the directed energy deposition process, which includes the selective removal and redeposition of damaged regions of metallic parts. Residual stress characteristics depend on the shape of the part and the shape of the redeposition region. The objective of this study is to investigate the effects of the radius and corner position of the substrate on the residual stresses for repair by using finite element analysis (FEA). The residual stress distribution of the 45° angle groove at the edge of the circular shape models on the outer and inner radii was analytically investigated. The analysis was accomplished using SYSWELD software by applying a moving heat source with defined material properties and cooling conditions integrated into the FEA model. The results showed a similar pattern of concentrated stress distribution for all models except the 40-mm and 60-mm radii, for which the maximum stress locations were different. The maximum residual stresses are high but lower than the yield strength, suggesting the absence of cracks and fractures due to residual stresses.

New constitutive models for non linear analysis of high strength fibrous reinforced concrete slabs

  • Yaseen, Ahmed Asaad;Abdul-Razzak, Ayad A.
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.121-131
    • /
    • 2022
  • The main goal of this study is to prepare a program for analyzing High Strength Steel Fibrous Reinforced Concrete (HSSFRC) slabs and predict the response and strength of the slab instead of preparing a prototype and testing it in the laboratory. For this purpose, new equations are proposed to represent the material properties of High Strength Steel Fibrous Reinforced Concrete. The proposed equations obtained from performing regression analysis on many experimental results using statistical programs. The finite element method is adopted for non-linear analysis of the slabs. The eight-node "Serendipity element" (3 DoF) is chosen to represent the concrete. The layered approach is adopted for concrete elements and the steel reinforcement is represented by a smeared layer. The compression properties of the concrete are modeled by a work hardening plasticity approach and the yield condition is determined depending on the first two stress invariants. A tensile strength criterion is adopted in order to estimate the cracks propagation. many experimental results for testing slabs are compared with the numerical results of the present study and a good agreement is achieved regarding load-deflection curves and crack pattern. The response of the load deflection curve is slightly stiff at the beginning because the creep effect is not considered in this study and for assuming perfect bond between the steel reinforcement and the concrete, however, a great agreement is achieved between the ultimate load from the present study and experimental results. For the models of the tension stiffening and cracked shear modulus, the value of Bg and Bt (Where Bg and Bt are the curvature factor for the cracked shear modulus and tension stiffening models respectively) equal to 0.005 give good results compared with experimental result.

철근부식으로 인한 지하철 박스구조물의 콘크리트 피복층 균열특성 분석 (Analysis of Crack characteristic on Concrete Cover for Subway Box Structure Due to Reinforcement Corrosion)

  • 최정열;신동섭;정지승
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.727-732
    • /
    • 2022
  • 도시철도 지하구조물에서 중요한 열화 중 하나인 철근부식은 철근의 부피 팽창에 의해 콘크리트의 피복층의 균열 또는 표면박리, 박락 등을 초래하여 철근콘크리트 구조물의 사용성과 안전성이 저하된다. 본 연구에서는 부식환경에서의 도시철도 지하박스 구조물을 대상으로 철근부식으로 인한 콘크리트 피복층의 균열발생 위치에서 철근의 팽창율을 측정하고 이를 바탕으로 철근부식으로 인한 콘크리트 피복층 들뜸 및 손상에 대한 분석을 수행하였다. 부식된 철근의 방사형 변위 분포 모델을 산출하고 기존 제안식과 비교, 분석하였다. 또한 대표 단면을 대상으로한 수치해석(역해석)을 수행하여 부식철근의 방사형 변위장에 의한, 철근의 불균일한 부식팽창을 해석모델에 적용하였다. 수치해석 결과를 바탕으로 철근부식율 진전에 따른 철근콘크리트 구조물의 균열 및 피복층 박리의 영향을 해석적으로 도출하고 현장 시료와의 비교를 통해 수치모델의 적정성을 입증하였다.

Mechanism of failure in the Semi-Circular Bend (SCB) specimen of gypsum-concrete with an edge notch

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.81-91
    • /
    • 2022
  • The effects of interaction between concrete-gypsum interface and edge crack on the failure behavior of the specimens in senicircular bend (SCB) test were studied in the laboratory and also simulated numerically using the discrete element method. Some quarter circular specimens of gypsum and concrete with 5 cm radii and hieghts were separately prepared. Then the semicircular testing specimens were made by attaching one gypsum and one concrete sample to one another using a special glue and one edge crack is produced (in the interface) by do not using the glue in that part of the interface. The tensile strengths of concrete and gypsum samples were separately measured as 2.2 MPa and 1.3 MPa, respectively. during all testing performances a constant loading rate of 0.005 mm/s were stablished. The proposed testing method showed that the mechanism of failure and fracture in the brittle materials were mostly governed by the dimensions and number of discontinuities. The fracture toughnesses of the SCB samples were related to the fracture patterns during the failure processes of these specimens. The tensile behaviour of edge notch was related to the number of induced tensile cracks which were increased by decreasing the joint length. The fracture toughness of samples was constant by increasing the joint length. The failure process and fracture pattern in the notched semi-circular bending specimens were similar for both methods used in this study (i.e., the laboratory tests and the simulation procedure using the particle flow code (PFC2D)).