• Title/Summary/Keyword: cracks pattern

Search Result 181, Processing Time 0.02 seconds

Analysis of Surface Contaminants and Physical Properties of the Daejanggakgibi Stele of Silleuksa Temple using Non-destructive Technology (비파괴 기술을 활용한 여주 신륵사 대장각기비의 표면오염물 분석과 물성진단)

  • KIM, Jiyoung;LEE, Myeongseong
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.186-197
    • /
    • 2022
  • The Daejanggakgibi Stele of Silleuksa Temple in Yeoju is a stone stele from the Goryeo Dynasty that is inscribed with various stories about the construction of Daejanggak, a place where Buddhist scriptures were kept. This stele has been maintained for a long time in a state in which discoloration of the body has occurred, and the inscription has been partially damaged due to dozens of cracks. Using non-destructive analysis methods for stone artifacts, material investigation, portable X-ray fluorescence analysis, and ultrasonic velocity analysis for the stele were performed. It was confirmed that the stele body was composed of light gray crystalline limestone, and the base stone, support stone, and cover stone were medium-grained biotite granite. Portable X-ray fluorescence analysis confirmed that iron(Fe) was an original coloring element of the stele surface. From the distribution pattern of the coloration, it can be inferred that iron-containing materials flew down from between the stele body and the cover stone. Thereafter, living organisms or organic contaminants attached to it so that yellow and black contaminants were formed. Ultrasonic diagnosis revealed that the physical property of both the front and back surfaces ranged from fresh rocks(FR) to completely weathered rocks(CW), and the average weathering index was grade 3(intermediate). However, the point where cracks developed intensively was judged to be the completely weathered stage(CW), and some cracks located in the upper and lower parts of the stele bear potentially very high risk. It is necessary to monitor the movement of these cracks and establish reinforcement measures for conservation in the future.

GINGIVAL MARGIAL LEAKAGE AND BONDING PATTERN OF THE COMPOSITE RESIN INLAY ACCORDING TO VARIOUS THICKNESS OF DIE SPACER (Die spacer의 두께에 따른 복합레진 inlay의 치은 변연부 미세누출 및 접착양태에 관한 연구)

  • Park, Tae-Il;Shin, Dong-Hoon;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.152-163
    • /
    • 1995
  • This experiment was performed to observe the adhesion pattern and microleakage in the gingival margin according to variation in the resin cement thickness which results from thickness of Die spacer. which is considered to effect the adaptability of the composite resin inlays. Clearfil CR inlays were fabricated on stone models with CR Sep applicated once and Nice fit twice, 4 times, and 6 times each. After 2nd curing within the CRC-100 oven, CR inlays were cemented with CR inlay cement. Dye(2% methylene blue) penetration and adhesion pattern were evaluated after sectioning of gingival margin into :3 pieces. The results were as follows ; 1. The thickness of resin cement showed unevenchanging pattern with that of die spacer, namely, it was increased until 4 times' application of Nice-Fit but was decreased with 6 times' application of that. 2. The degree of dye penetration wasn't affected by cement thickness within a limited value. 3. Most of dye penetration was shown through the interface between cement and enamel rather than the interface between cement and CR inlay. This shows that the affinity of resin cement for CR inlay was superior to the adhesive strength with tooth structure. 4. No gap was found at the interface between enamel and cement but some showed separation between dentin and cement. It is concidered that the contraction force of cement was less than the bond strength with the enamel. 5. Lots of voids were found in the CR inlay and resin cement. There was a pooling tendency of bonding agent and cement in the axiogingival line angle portion. 6. In some specimens, cracks were shown in enamel margin. From this it could be considered that cavity preparation and surface treatment weakened the tooth structure.

  • PDF

An Ultrasonic Pattern Recognition Approach to Welding Defect Classification (용접 결함 분류를 위한 초음파 형상 인식 기법)

  • Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.395-406
    • /
    • 1995
  • Classification of flaws in weldments from their ultrasonic scattering signals is very important in quantitative nondestructive evaluation. This problem is ideally suited to a modern ultrasonic pattern recognition technique. Here brief discussion on systematic approach to this methodology is presented including ultrasonic feature extraction, feature selection and classification. A stronger emphasis is placed on probabilistic neural networks as efficient classifiers for many practical classification problems. In an example probabilistic neural networks are applied to classify flaws in weldments into 3 classes such as cracks, porosity and slag inclusions. Probabilistic nets are shown to be able to exhibit high performance of other classifiers without any training time overhead. In addition, forward selection scheme for sensitive features is addressed to enhance network performance.

  • PDF

Stability analysis of a tunnel excavated in weak rocks and the optimal design for the support pattern (연약지반내 굴착터널의 안정성 평가 및 최적보강설계에 관한 연구)

  • 최성웅;신희순
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Geological and geotechnical surveys, in general, should precede the excavation to ensure the safety of the tunnel and should be followed up according to the various geological condition during the excavation. However actually the standard support patterns which were decided during the design step used be insisted for the whole excavation steps in spite of the various geological conditions. OO tunnel was excavated with NATM and a support pattern type-V in weak rocks. When the tunnel was excavated up to 25m long, the severe displacement was generated in the portal area and the shotcrete was damaged to make the cracks and the tunnel face was totally collapsed. It might happen owing to the one-day heavy rain, but the exact reason for that accident should be found out and the new optimal support patternt needed. Consequently three dimensional numerical analysis was applied for the evaluation of the cause of the tunnel collapse instead of two dimensional analysis, because three dimensional analysis can show better the real field phenomenon than two dimensional analysis in which the load distribution methods are adopted for the tunnel excavation. We could simulate the actual situations with three dimensional finite difference code and propose the new optimal support patterns.

  • PDF

Electrical Treeing Deterioration and Dielectric Breakdown Phenomena in Polymeric Insulator (고분자 절연재료에서 전기트리 열화 및 절연파괴 현상)

  • Cho, Yeong-Sin;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.398-403
    • /
    • 1999
  • Studies on the electrical treeing deterioration and dielectric breakdown phenomena in the polymeric insulator of polyethylene and epoxy resin were carried out. Block type samples with needle-plane electrode geometry were electrically stressed and the tree pattern from the needle tip was observed. In LDPE the density of electrical tree was very high and its pattern was bush type. For the case of XLPE, branched tree was observed. As temperature and SN content increased, the dielectric breakdown voltage decreased and the treeing phenomena became more complicated. Fan type cracks were observed around the conducting tree path in the brittle DGEBA/MDA system.

  • PDF

A Correlation Between Crack Growth and Abrasion for Selected Rubber Compounds

  • Lee, Hyunsang;Wang, Wonseok;Shin, Beomsu;Kang, Seong Lak;Gupta, Kailash Chandra;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • A typical wear pattern was reported to resemble the fatigue crack growth behavior considering its mechanism, especially for amorphous rubbers such as styrene-butadiene rubber (SBR). In this study, the wear and crack growth rates were correlated using two separate experiments for carbon black and silica-reinforced selected rubber compounds. The wear rate was determined using a blade-type abrasion tester, where the frictional energy input during wearing was measured. The crack propagation rate was determined under different tearing energy inputs using a home-made fatigue tester, with a pure-shear test specimen containing pre-cracks. The rates of abrasion and crack propagation were plotted on a log-log scale as a function of frictional and tearing energies, respectively. Reasonable agreement was observed, indicating that the major mechanism of the abrasion pattern involved repeated crack propagation.

3D finite element simulation of human proximal femoral fracture under quasi-static load

  • Hambli, Ridha
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • In this paper, a simple and accurate finite element model coupled to quasi-brittle damage law able to describe the multiple cracks initiation and their progressive propagation is developed in order to predict the complete force-displacement curve and the fracture pattern of human proximal femur under quasi-static load. The motivation of this work was to propose a simple and practical FE model with a good compromise between complexity and accuracy of the simulation considering a limited number of model parameters that can predict proximal femur fracture more accurately and physically than the fracture criteria based models. Different damage laws for cortical and trabecular bone are proposed based on experimental results to describe the inelastic damage accumulation under the excessive load. When the damage parameter reaches its critical value inside an element of the mesh, its stiffness matrix is set to zero leading to the redistribution of the stress state in the vicinity of the fractured zone (crack initiation). Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. To illustrate the potential of the proposed approach, the left femur of a male (age 61) previously investigated by Keyak and Falkinstein, 2003 (Model B: male, age 61) was simulated till complete fracture under one-legged stance quasi-static load. The proposed finite element model leads to more realistic and precise results concerning the shape of the force-displacement curve (yielding and fracturing) and the profile of the fractured edge.

Flexural behavior of ultra high performance concrete beams reinforced with high strength steel

  • Wang, Jun-Yan;Gu, Jin-Ben;Liu, Chao;Huang, Yu-Hao;Xiao, Ru-Cheng;Ma, Biao
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.539-550
    • /
    • 2022
  • A detailed experimental program was conducted to investigate the flexural behavior of ultra high performance concrete (UHPC) beams reinforced with high strength steel (HSS) rebars with a specified yield strength of 600 MPa via direct tensile test and monotonic four-point bending test. First, two sets of direct tensile test specimens, with the same reinforcement ratio but different yield strength of reinforcement, were fabricated and tested. Subsequently, six simply supported beams, including two plain UHPC beams and four reinforced UHPC beams, were prepared and tested under four-point bending load. The results showed that the balanced-reinforced UHPC beams reinforced with HSS rebars could improve the ultimate load-bearing capacity, deformation capacity, ductility properties, etc. more effectively owing to interaction between high strength of HSS rebar and strain-hardening characteristic of UHPC. In addition, the UHPC with steel rebars kept strain compatibility prior to the yielding of the steel rebar, further satisfied the plane-section assumption. Most importantly, the crack pattern of the UHPC beam reinforced with HSS rebars was prone to transform from single main crack failure corresponding to the normal-strength steel, to multiple main cracks failure under the condition of balanced-reinforced failure, which validated by the conclusion of direct tensile tests cooperated with acoustic emission (AE) source locating technique as well.

Simulation of crack propagation of concrete with the DIANA (DIANA를 이용한 콘크리트 균열 진전 시뮬레이션)

  • 조병완;태기호;변문주;이두화
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.463-469
    • /
    • 2004
  • This paper discusses 2D lattice models of beams for simulating the fracture of brittle materials. A simulation of an experiment on a connote beam subjected to bending, in which two overlapping cracks occur, is used to study the effect of individual beam characteristics and different arrangements of the beams in the overall lattice. It was found that my regular orientation of the beams influences the resulting crack patterns. Methods to implement a wide range of poisson's ratios are also developed, the use of the lattice to study arbitrary micro-structures is outlined The crack pattern that n obtained with lattice m in good agreement with the experimental results. Also, numerical simulations of the tests were performed by means of a lattice model, and non-integer dimensions were measured on the predicted lattice damage patterns.

  • PDF

Plastic Flow Direction and Strength Evaluation of Dissimilar Fiction Bonding Interface Joints (이종마찰 접합계면부의 소성유동 방향성 및 강도 평가)

  • Oh, Jung-Kuk;Sung, Back-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • Friction welding has many merits such as energy efficiency, simple processing, etc butt difficult to obtain good weld at the welded interface and heat affected zone. To date, the continuum mechanics and fracture mechanics are utilized to analyse stresses at the interface and propagation of cracks. In this study. STS304 and SM15C are selected because they can be differentiated distinctively from metallic point of view and crack can be observed easily. It is ovserved during friction welding that STS304, rotary part is hatter than SH15C, fixed part. The last fracture occurs around the center because the surface of fatigue fracture has smooth regions, due to the separation phenomenon in plastic flows layers and striation dimple pattern.