• Title/Summary/Keyword: cracks pattern

Search Result 181, Processing Time 0.028 seconds

An Experimental Study on Structural Behavior of High-strength Concrete Members with Compressive Strength of 80 MPa Subjected to Flexure (휨을 받는 압축강도 80 MPa 수준의 고강도 콘크리트 부재의 구조거동 실험 연구)

  • Yang, In-Hwan;Hwang, Chul-Sung;Kim, Kyoung-Chul;Joh, Chang-Bin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2017
  • This paper concerns the structural behavior of high-strength concrete beams with compressive strength of 80 MPa subjected to flexure. Main test variables were nominal yielding strength of longitudinal rebar including normal strength rebar(SD 400) and high strength rebar(SD 600), reinforcement ratio from 0.98 to 1.58% and beam section size with $200{\times}250$, $200{\times}300mm$. The nine beams were cast and tested under flexure. The study investigated ultimate flexural strength, load-deflection relationship, crack patterns, failure patterns and ductility of the test beams. Test results indicate that when rebar ratio increased flexural strength increased and ductility decreased. In addition, the number of cracks increased and the crack width decreased as the reinforcement ratio increased. The yield strength of rebar did not affect significantly load-crack width relationship. Nonlinear analysis of test beams was performed and then test results and analytical results of ultimate load were compared. Analytical results of high-strength concrete beams overall underestimated flexural strength of test beams.

Flexural Behavior of FRP Bar Reinforced HSC Beams with Different Types of Reinforcing Bar and Fiber (이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨 거동)

  • Yang, Jun-Mo;Shin, Hyun-Oh;Min, Kyung-Hwan;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.273-280
    • /
    • 2011
  • Ten high-strength concrete beam specimens, which have various combinations of different types of flexural reinforcement and short fibers were constructed and tested. Six beams were reinforced with two layers of steel, CFRP, and GFRP bar combinations. The other four beams were reinforced with two layers of single type CFRP and GFRP bars, with steel and synthetic short fibers. An investigation was performed on the influence of the parameters on the load-carrying capacity, post cracking stiffness, cracking pattern, deflection behavior, and ductility. The low post cracking stiffness, large deflection, deep crack propagation, large crack width, and low ductility of FRP bar-reinforced beams were controlled and improved by positioning steel bars in the inner layer of the FRP bar layer. In addition, the addition of fibers increased the first-cracking load, ultimate flexural strength, and ductility as well as the deep propagating cracks were controlled in the FRP bar-reinforced concrete beams. The increased ultimate concrete strain of fiber-reinforced concrete should be determined and considered when FRP bar-reinforced concrete members with fibers are designed.

Shear Strength of SFRC Deep Beam with High Strength Headed Reinforcing Tensile Bars (고강도 확대머리 인장철근을 가지는 SFRC 깊은 보의 전단강도)

  • Kim, Young-Rok;Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.111-117
    • /
    • 2019
  • Shear experiments were carried out to evaluate shear performance of SFRC deep beams with end-anchorage of SD600 high strength headed reinforcing tensile bars. The experimental variables include the end-anchorage methods of tensile bars (headed bar, straight bar), the end-anchorage lengths, and the presence of shear reinforcement. Specimens with a shear span ratio of 1 showed a pattern of the shear compression failure with the slope cracks progressed after the initial bending crack occurred. Specimens with end-anchorage of headed bars (H-specimens) showed a larger shear strengths of 5.6% to 22.4% compared to straight bars (NH-specimens). For H-specimens, bearing stress reached 0.9 to 17.2% of the total stress of tensile bars up to 75% of the maximum load, and reached 22.4% to 46%. This shows that the anchorage strength due to the bearing stress of headed bars has a significant effect on shear strength. The experimental shear strength was 2.68 to 4.65 times the theoretical shear strength by the practical method, and the practical method was evaluated as the safety side.

Nondestructive Deterioration Diagnosis and Environmental Investigation of the Stupa of the Buddhist Monk Soyo in Baegyangsa Temple, Jangseong (장성 백양사 소요대사탑의 비파괴 훼손도 진단과 입지환경 검토)

  • Kim, Yuri;Lee, Myeong Seong;Chun, Yu Gun;Lee, Mi Hye;Jwa, Yong-Joo
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.4
    • /
    • pp.52-63
    • /
    • 2016
  • The Stupa of Buddhist Monk Soyo in Baegyangsa temple, Jangseong, was erected to pay a tribute to the achievement of the Buddhist monk Soyo, who worked for Baegyangsa temple as a chief monk, and is a bellshaped stupa with the detailed pattern of a Korean traditional buddhist bell. It is composed of pinkish-grey sandstone and the body of the stupa was damaged by longitudinal cracks on the front and back areas and the exfoliation caused break-out in the most part of the sculpture on the left and right areas. According to the ultrasonic test and infrared thermography analysis for physical deterioration diagnosis, most weathering aspects appeared on the body of the stupa and some exfoliated part that could not be seen with the naked eye was detected 6.1% and 5.9% on the left and right side respectively. Hyperspectral imaging analysis was also carried out to assess biological deterioration. According to the result, the surface of the stupa was covered 71.8 ~ 79.9% with vegetation like algae, lichen and moss. NDVI(Normalized Difference Vegetation Index) was higher relatively on the bottom part near the ground, right and back areas of the stupa. Therefore conservation treatment for the exfoliated part and bio-deterioration is necessary and the environment condition needs to be fixed to prevent extra damages on the stupa.

Pile-cap Connection Behavior between Hollow-Head Precast Reinforced Concrete Pile and Foundation (프리캐스트 철근콘크리트 중공 말뚝과 기초 접합부 반복가력 거동)

  • Bang, Jin-Wook;Jo, Young-Jae;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Recently, most of the pile foundations have been applied as a method to transfer the heavy load of the structure to the ground with high bearing capacity. In this study, the pile-cap behavior between foundation and hollow-head precast reinforced concrete(HPC) pile reinforced with longitudinal rebar and filling concrete was experimentally evaluated depending on the cyclic load and reinforcement ratio. As the drift ratio increases, it was found that the cracks pattern and fracture behavior of two types of pile-cap specimens according to the reinforcement ratio were evaluated to be similar. As the reinforcement ratio increases by 1.77 times, the BS-H25 specimen increases the maximum load by 1.47 times compared to the BS-H19 specimen. However, the ductility ratio of positive and negative was decreased by 76% and 70% respectively. After the yielding of the pile-cap reinforcing rebars, the positive and negative stiffness of the all specimens were decreased by a range from 66% to 71% and a range from 54% to 57% respectively, and the average stiffness of BS-H25 specimen is 13% higher than that of BS-H19 specimen. The cumulative dissipated energy capacity of BS-H19 and BS-H25 specimen under ultimate load state is 5.5 times and 6.6 times higher than that of service load state.

A Study on the Production Techniques and Raw Material Characteristics of Clay Bodhisattva Excavated from the Neungsan-ri Temple Site Using CT (CT 조사를 통한 부여 능산리사지 출토 소조보살상의 제작 기법과 재료적 특성 연구)

  • Shin Yeonhong;Ro Jihyun;Kim Jiho;Park Haksoo
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.153-162
    • /
    • 2023
  • Clay figure of Baekje, produced by forming and molding various shapes using clay, are mainly excavated from temple sites and provide essential information for studying the Buddhist art of Baekje. Research on clay figures of Baekje primarily focuses on the characteristics of Baekje-era temples in which such figures are excavated, as well as the role and production techniques of clay figures, by comparing regional and morphological characteristics. In particular, research on the manufacturing method of clay figures is mainly carried out by visual observation, whereas precise scientific analysis is required to understand production techniques and characteristics of raw materials in greater detail. In this study, to confirm such production techniques and material characteristics, computed tomography (CT) scans were conducted on the Clay Bodhisattva excavated from the Neungsan-ri Temple site in Buyeo. As a result, it was found that the Clay Bodhisattva was made using a cylindrical core of fine clay, tied together with several thin branches or reeds with straws. The clay used in the figure bore traces indicating the presence of herbaceous plants, which increase adhesion between clay and prevent cracks in the contraction process. On the other hand, the density of the fine clay differs on the inside and outside of the clay figure. Based on this, it is presumed that the clay was applied around the cylindrical core to shape the Clay Bodhisattva. The clay was reapplied on top of the figure to express the detailed shape and pattern.

ANALYSIS OF ER:YAG LASER IRRADIATION ON CUTTING EFFICACY AND TEMPERATURE CHANGES OF DENTIN (Er:YAG 레이저의 상아질 삭제효과 및 이에 따른 온도변화)

  • Im, Kwang-Ho;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.32-44
    • /
    • 2001
  • The purpose of this study was to investigate the effects of Er : YAG laser on cutting efficacy and temperature changes of dentin. We used the dentin specimens of human premolars and molars which contain the physiologic saline and maintain the pulpal pressure in dentinal tubules. Each specimen was exposed to Er : YAG laser with non-contact handpiece type delivery system under different treatment condition of irradiation energy, pulse repetition rate, and exposure time. Two procedures were conducted by the presence of water flow during lasing. The specimens were grouped by thickness of dentin. We investigated the cavity pattern, volume, and temperature change of dentin specimen to determine the cutting efficacy and temperature rise of Er : YAG laser, and obtained following results. 1. Cutting volume of dentin was increased by increasing the irradiation energy, pulse repetition rate, and exposure time(P<0.05). 2. Margins of abulated cavities were sharp and clean and floors of cavities were conical in shape and showing smooth surfaces. Upper diameter of abulated cavities were increasing as laser parameter of irradiation energy, pulse repetition rate, and exposure time were increased. A few cracks were observed on abulated surfaces under treatment condition of laser parameter with 150mJ, 5Hz, and 5sec. 3. Temperature was increased as laser parameter of irradiation energy, pulse repetition rate, and exposure time were increased, and temperature rise was decreased as dentin thickness was increased(P<0.05). 4. Temperature rise was decreased under water flow compared with no water flow during laser exposure(P<0.05). From these results, we think that the method of using a Er:YAG laser would be effective and safe in cutting dentin for clinical application.

  • PDF

A STUDY OF THE MECHANISM OF IMPROVING ACID RESISTANCE OF BOVINE TOOTH ENAMEL AFTER PULSED Nd-YAG LASER IRRADIATION (펄스형 Nd-YAG 레이저 조사에 의한 법랑질 내산성 증가 기전에 관한 연구)

  • Lee, Young-Soon;Shon, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.640-658
    • /
    • 1996
  • The purpose of this study was to examine the mechanism of improving acid resistance of Nd-YAG laser irradiated tooth enamel and determine the most effective energy density for improving acid resistance. The bovine tooth enamel were lased with a pulsed Nd-YAG laser. The energy densities of exposed laser beam were varied from 10 to $70\;J/cm^2$. To investigate the degree of improving acid resistance by irradiation, all the samples were submerged to demineralize in 0.5 N $HClO_4$ solution for 1 minute. After 1 minute, 0.05 % $LaCl_3$ was added to the solution for interrupting the demineralization reaction. The amounts of dissolved calcium and phosphate in the solution were measured by using an atomic absorption spectrophotometer and the UV/VIS spectrophotometer, respectively. To examine the mechanism of improving acid resistance, X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy were taken. The X-ray diffraction pattern of the samples were obtained in the $10^{\circ}{\sim}80^{\circ}2{\theta}$ range with $Cu-K{\alpha}$ radiation using M18HF(Mac Science Co.) with X-ray diffractometer operating at 40 KV and 300 mA. The infra-red spectra of the ground samples in 300 mg KBr pellets 10 mm diameter were obtained in the $4000cm^{-1}\;to\;400cm^{-1}$ range using JASCO 300E spectrophotometer. The scanning electron microscopy was carried out using JSM6400(JEOL Co.) with $500{\sim}2000$ times magnification. The results were as follow 1. The concentration of calcium dissolved from laser irradiated enamel with $50J/cm^2$ was significantly lesser than that of unlased control group (p<0.05) 2. From the result of the X-ray diffraction analysis, $\beta$-TCP, which increases acid solubility, was identified in lased enamel but the diffraction peaks of (002) and (004) became sharp with increasing energy density of laser irradiation. This means that the crystals in lased samples were grown through the c-axis and subsequently, the acid solubility of enamel decreased. 3. The a-axis parameter was slightly increased by laser irradiation, whereas the c-axis parameter was almost constant except for a little decrease at $50J/cm^2$. 4. In the infra-red spectra of lased enamels, phosphate bands ($600{\sim}500cm^{-1}$), B-carbonate bands (870, $1415{\sim}1455cm^{-1}$), and A-carbonate band ($1545cm^{-1}$) were observed. The amounts of phosphate bands and the B-carbonate bands were reduced, on the other hand, the amount of the A-carbonate band was increased by increase the energy density. 5. The SEM experiments reveal that the surface melting and recrystallization were appeared at $30J/cm^2$ and the cracks were observed at $70J/cm^2$. From above results, It may be suggested that the most effective energy density for improving acid resistance of tooth enamel with the irradiation of Nd-YAG laser was $50J/cm^2$. The mechanism of improving acid resistance were reduction of permeability due to surface melting and recrystallization of lased enamel and reduction of acid solubility of enamel due to decrease of carbonate content and growth of crystal.

  • PDF

Development of 3D Viewer for Tree Cavity using Pulse Ultrasound (펄스 초음파를 이용한 수목 공동부 3D 구현 프로그램 제작)

  • Son, Jungmin;Kang, Sunghoon;Moon, Jongwook;Yoon, Seokkyu;Park, Jikoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.265-271
    • /
    • 2021
  • The pattern of the tree's internal swelling depends on many causes. Since it is difficult to detect these various causes of swelling with a general method, if the state of swelling for a long time cannot be confirmed, serious damage to the trees may occur due to enlargement of the swelling area. In the method of acquiring a tree tomography image, an impulse passing through the tree is generated by tapping the sensor with a rubber mallet, and the moving speed is recorded. In this paper, to measure cracks, cavities, and swelling due to physical damage, we developed a 3D viewer that can know the internal state of a tree using a tree cross-section image acquired from Arbotom to determine the degree of swelling inside the tree. Based on this, we tried to present data that can be referred to when surgical operation of trees is required. In order to acquire a tomographic image of a tree, 6 sensors were attached to the three Yangpala and Maple trees, and a 1 m-long tree was measured using the Arbotom program, and a 3D image was implemented through the 3D Viewer created using MATLAB. In addition to simply acquiring images, the cross-sectional length and volume of the tree were measured. In the actually produced 3D Viewer, the length of the part where the swelling of the maple tree occurred was 33.12 cm, and the swelling of the yangpala tree was measured as 21.41 cm. The volume of the maple tree was measured to be 78.832 ㎤. As a result of comparing the cross-sectional image of the Arbotom and the 3D image, the same result as the real aspect of the tree was obtained, so it can be judged that the reliability of the manufactured software is also secured, and data to be applied to the surgical tree operation through the created Viewer is provided. It is believed that the damage will be minimized.

Evaluation of the Curvature Reliability of Polymer Flexible Meta Electronic Devices based on Variations of the Electrical Properties (전기적 특성 변화를 통한 고분자 유연메타 전자소자의 곡률 안정성 평가)

  • Kwak, Ji-Youn;Jeong, Ji-Young;Ju, Jeong-A;Kwon, Ye-Pil;Kim, Si-Hoon;Choi, Doo-Sun;Je, Tae-Jin;Han, Jun Sae;Jeon, Eun-chae
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.268-276
    • /
    • 2021
  • As wireless communication devices become more common, interests in how to control the electromagnetic waves generated from the devices are increasing. One of the most commonly used electromagnetic wave control materials is magnetic one, but due to the features that make the product heavy and thick when applied to the product, it is difficult to use them in curved electronic devices. Therefore, a polymer flexible meta electronic device has been presented to sort out the problem, which is thin and can have various curvatures. However, it requires an additional evaluation of curvature reliability. In this study, we developed a method to predict electromagnetic wave control characteristics through the resistance/length of the conductive ink line patterns of polymer flexible meta electronic devices, which is inversely proportional to the electromagnetic wave control characteristics. As the radius of curvature decreased, the resistance/length increased, and there was little variations with the duration times of curvature. We also found that both permanent and recoverable changes along with the removal of curvature were occurred when the curvature was applied, and that the cause of these changes was newly created vertical cracks in the conductive ink line pattern due to the tensile stress applied by applying curvature.