• Title/Summary/Keyword: cracking load

Search Result 601, Processing Time 0.027 seconds

Structural Model Testing of Spillway Pier Subjected to Static Load (댐여수로 수문교각의 정적 거동 예측을 위한 구조 모형시험)

  • Lee Myung Kue;Jang Bong Seok;Lee Hyung Joan;Ha Ik Soo;Kim Hyung Soo;Koh Sung Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.115-118
    • /
    • 2005
  • In this study, small scale model test was performed to verify the ultimate load capacity of spillway pier structure under static load. The 1/20 scale test specimen was made of specially designed micro-concrete and wire mesh. From the test result, the cracking load of specimen was 10 tonf and the ultimate was 19tonf. From the similarity rule, cracking and ultimate load of prototype pier structure were predicted 4000 tonf, 7600 ton, respectively.

  • PDF

Validation of 3D crack propagation in plain concrete -Part I: Experimental investigation - the PCT3D test

  • Feist, C.;Hofstetter, G.
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.49-66
    • /
    • 2007
  • The objective of this paper is to provide experimental data on the propagation of curved crack-surfaces and the respective load-displacement diagrams for the validation of numerical models for cracking of concrete, subjected to three-dimensional stress states. To this end beam-shaped specimens are subjected to combined bending and torsional loading, leading to the formation of a spatially curved crack-surface. The experimental data contain the evolution of the load and of the strains at selected points in terms of the crack mouth opening displacement and the propagation of the crack surface.

An Experimental Study on Failure Behavior of TP316 Stainless Steel Pipe with Local Wall Thinning and Cracking (국부 감육과 균열이 발생한 TP316 스테인리스강 배관의 파괴거동에 관한 실험적 연구)

  • Cheung, Jin Hwan;Kim, In Tae;Choi, Seock Jin;Choi, Hyung Suk;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.647-657
    • /
    • 2012
  • Although nuclear power plant piping system is designed conforming to design specifications, the piping systems are deteriorated with increase in service life. In this study, monotonic and cyclic loading tests were carried out on TP316 stainless steel pipe specimens, and the effect of local wall thinning and cracking on failure behavior was investigated. In the tests, 0%, 35% and 75% wall thinning and cracking of initial thickness were artificially introduced to inside elbow and straight pipe specimens, and internal pressures of 20MPa were applied to simulate real operation condition. From the test results, the effect of local wall thinning and cracking on failure mode, ultimate load, number of cycle and strain energy was presented, and maximum bending moment was compared with allowable bending moment calculated by ASME code.

Measurement and Prediction of Long-term Deflection of Flat Plate Affected by Construction Load (시공하중에 의한 플랫 플레이트의 장기처짐 계측 및 해석)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Kim, Jae-Yo;Kim, Yong-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.615-625
    • /
    • 2014
  • Excessive long-term slab deflection caused by construction load is a critical issue for the design of concrete slabs, as long span flat plates become popular for tall buildings. In the present study, the effect of construction load causing early slab cracking on the long-term deflection was theoretically studied. On the basis of the result, a numerical analysis method was developed to predict the long-term deflection of flat plates. In the proposed method, immediate deflection due to slab cracking and long-term effect of creep and shrinkage were considered. To verify the construction load effect, long-term slab deflections were measured in actual flat plate buildings under construction. The results showed that the immediate deflection due to the construction load increased significantly the long-term deflection. The proposed method was used to predict the deflections of the buildings. The results were compared with the measurement results. The predictions agree well with the long-term deflections of flat plate affected by construction load.

Performance Estimation of Tunnel Lining Concrete Reinforced Steel Fiber (강섬유 보강 터널 라이닝 콘크리트의 성능 평가)

  • Jeon, Chan-Ki;Kim, Su-Man;Lee, Myung-Soo;Lee, Jong-Eun;Jeon, Joong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.579-582
    • /
    • 2005
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, steel fiber reinforcement concrete(SFRC) has better crack properties than that of reinforced concrete. In this study, mechanical behaviour of a tunnel lining was examined by model tests. The model tests were carried out under various conditions taking different loading shapes, thicknesses and leakage of lining, and volume content of steel fiber. From these model test, the cracking load, the failure load, defection and cracking position and type were examined and the characteristics of deformation and failure for tunnel lining were estimated and researched.

  • PDF

Flexural studies on reinforced geopolymer concrete beams under pure bending

  • Sreenivasulu, C.;Jawahar, J. Guru;Sashidhar, C.
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 2019
  • The present investigation is mainly focused on studying the flexural behavior of reinforced geopolymer concrete (RGPC) beams under pure bending. In this study, copper slag (CS) was used as a partial replacement of fine aggregate. Sand and CS were blended in different proportions (100:0, 80:20, 60:40 and 40:60) (sand:CS) by weight. Fly ash and ground granulated blast furnace slag (GGBS) were used as binders and combination of sodium hydroxide (8M) and sodium silicate solution were used for activating the binders. The reinforcement of RGPC beam was designed as per guidelines given in the IS 456-2000 and tested under pure bending (two-point loading) after 28 days of ambient curing. After conducting two point load test the flexural parameters viz., moment carrying capacity, ultimate load, service load, cracking moment, cracking load, crack pattern and ultimate deflection were studied. From the results, it is concluded that RGPC beams have shown better performance up to 60% of CS replacement.

Evaluating a Load Limit on Heavy Vehicles in Flexible Pavements (아스팔트 포장구조체에 대한 중차량 제한하중 평가)

  • Park, Seong-Wan;Hwang, Jung Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1D
    • /
    • pp.53-60
    • /
    • 2010
  • The objective of this paper is to evaluate a performance-based load zoning procedure in flexible pavements. Long-term performance in flexible pavements will be evaluated using VESYS type rutting model and Miner s theory on fatigue cracking. Permanent deformation properties such as alpha and gnu, and fatigue cracking properties such as k1 and k2 in asphalt concrete were used respectively. The data from the literatures were also used in predicting performance in flexible pavements for evaluating load restrictions as well as parametric study. Finally, a performance-based load zoning procedure and a simple load limit procedure for load zoning were assessed.

Investigation of Likelihood of Cracking in Reinforced Concrete Bridge Decks

  • ElSafty, Adel;Abdel-Mohti, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.79-93
    • /
    • 2013
  • One of the biggest problems affecting bridges is the transverse cracking and deterioration of concrete bridge decks. The causes of early age cracking are primarily attributed to plastic shrinkage, temperature effects, autogenous shrinkage, and drying shrinkage. The cracks can be influenced by material characteristics, casting sequence, formwork, climate conditions, geometry, and time dependent factors. The cracking of bridge decks not only creates unsightly aesthetic condition but also greatly reduces durability. It leads to a loss of functionality, loss of stiffness, and ultimately loss of structural safety. This investigation consists of field, laboratory, and analytical phases. The experimental and field testing investigate the early age transverse cracking of bridge decks and evaluate the use of sealant materials. The research identifies suitable materials, for crack sealing, with an ability to span cracks of various widths and to achieve performance criteria such as penetration depth, bond strength, and elongation. This paper also analytically examines the effect of a wide range of parameters on the development of cracking such as the number of spans, the span length, girder spacing, deck thickness, concrete compressive strength, dead load, hydration, temperature, shrinkage, and creep. The importance of each parameter is identified and then evaluated. Also, the AASHTO Standard Specification limits liveload deflections to L/800 for ordinary bridges and L/1000 for bridges in urban areas that are subject to pedestrian use. The deflection is found to be an important parameter to affect cracking. A set of recommendations to limit the transverse deck cracks in bridge decks is also presented.

Strengthening Effects of Slabs by Aramid Fiber Sheet (아라미드섬유 쉬트에 의한 슬래브의 보강효과)

  • Yeon, Kyu-Seok;Kang, Young-Sug;Kim, Hyung-Woo;Lee, Youn-Su;Kim, Nam-Gil
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.105-113
    • /
    • 1999
  • This study was conducted to evaluate the structural behaviors of Aramid fiber sheet reinforced slabs. Seven concrete slabs with $45{\times}8.5{\times}200cm$ were made for this experiment one slab with out being reinforced completely loaded until failure and the maximum load was obtained from this test. 70% of the maximum load was applied to 3 Aramid fiber sheet reinforced slabs after cracking and to the rest of 3 Aramid fiber sheet reinforced slabs without loading and cracking. Test results shows that maximum loading flexural rigidity and ductility for the Araimid fiber sheet reinforced slabs after initial cracking are similar as those for the Armied fiber sheet reinforced slabs without loading and cracking.

Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces (최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가)

  • 유승룡;김대훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.