• Title/Summary/Keyword: cracking failure

Search Result 575, Processing Time 0.027 seconds

The Study on the Characteristics of Mode I Crack for Cross-ply Carbon/Epoxy Composite Laminates Based on Stress Fields (응력장을 이용한 직교적층 탄소섬유/에폭시 복합재 적층판의 모드 I 균열 특성 연구)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Woo, Kyeong-Sik
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.327-334
    • /
    • 2019
  • The delamination is a special mode of failure occurring in composite laminates. Several numerical studies with finite element analysis have been carried out on the delamination behavior of unidirectional composite laminates. On the other hand, the fracture for the multi-directional composite laminates may occur not only along the resin-fiber interface between plies known as interply or interlaminar fracture but also within a ply known as interyarn or intralaminar fracture accompanied by matrix cracking and fiber bridging. In addition, interlaminar and intralaminar cracks appear at irregular proportions and intralaminar cracks proceeded at arbitrary angle. The probabilistic analysis method for the prediction of crack growth behavior within a layer is more advantageous than the deterministic analysis method. In this paper, we analyze the crack path when the mode I load is applied to the cross-ply carbon/epoxy composite laminates and collect and analyze the probability data to be used as the basis of the probabilistic analysis in the future. Two criteria for the theoretical analysis of the crack growth direction were proposed by analyzing the stress field at the crack tip of orthotropic materials. Using the proposed method, the crack growth directions of the cross-ply carbon/epoxy laminates were analyzed qualitatively and quantitatively and compared with experimental results.

Development of the Phased Array Ultrasonic Testing Technique for Nuclear Power Plant's Small Bore Piping Socket Weld (원전 소구경 배관 소켓용접부 위상배열 초음파검사 기술 개발)

  • Yoon, Byung-Sik;Kim, Yong-Sik;Lee, Jeong-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.368-375
    • /
    • 2013
  • Failure of small bore piping welds is a recurring problem at nuclear power plants. And the socket weld cracking in small bore piping has caused unplanned plant shutdowns for repair and high economic impact on the plants. Consequently, early crack detection, including the detection of manufacturing defects, is of the utmost importance. Until now, the surface inspection methods has been applied according to ASME Section XI requirements. But the ultrasonic inspection as a volumetric method is also applying to enforce the inspection requirement. However, the conventional manual ultrasonic inspection techniques are used to detect service induced fatigue cracks. And there was uncertainty on manual ultrasonic inspection because of limited access to the welds and difficulties with contact between the ultrasonic probe and the OD(outer diameter) surface of small bore piping. In this study, phased array ultrasonic inspection technique is applied to increase inspection speed and reliability. To achieve this object, the 3.5 MHz phased array ultrasonic transducer are designed and fabricated. The manually encoded scanner was also developed to enhance contact conditions and maintain constant signal quality. Additionally inspection system is configured and inspection procedure is developed.

Grain Boundary Character Changes and IGA/PWSCC Behavior of Alloy 600 Material by Thermomechanical Treatment (가공열처리에 의한 Alloy 600 재료의 결정립계특성 변화와 입계부식 및 1차측 응력부식균열 거동)

  • Kim, J.;Han, J.H.;Lee, D.H.;Kim, Y.S.;Roh, H.S.;Kim, G.H.;Kim, J.S.
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.919-925
    • /
    • 1999
  • Grain boundary characteristics and corrosion behavior of Alloy 600 material were investigated using the concept of grain boundary control by thermomechanical treatment(TMT). The grain boundary character distribution (GBCD) was analyzed by electron backscattered diffraction pattern. The effects of GBeD variation on intergranular at tack(JGA) and primary water stress corrosion cracking(PWSeC) were also evaluated. Changes in the fraction of coinci dence site lattice(CSL) boundaries in each cycle of TMT process were not distinguishable, but the total eSL boundary frequencies for TMT specimens increased about 10% compared with those of the commercial Alloy 600 material. It was found from IGA tests that the resistance to IGA was improved by TMT process. However, it was found from PWSCC test that repeating of TMT cycles resulted in the gradual decrease of the time to failure and the maximum load due to change in grain boundary characteristics, while the average crack propagation rate of primary crack increased mainly due to suppression of secondary crack propagation. It is considered that these corrosion characteristics in TMT specimens is attributed to 'fine tuning of grain boundary' mechanism.

  • PDF

A Study on the Elastic Restoration Characteristics According to Environmental Resistance Condition of Structural Sealing Finishing Materials (구조용 실링마감재의 내환경 조건에 따른 탄성복원 특성 연구)

  • Jang, Pil-Sung;Kang, Dong-Won;Hong, Soon-Gu;Kim, Young-Geun;Kim, Sung-Rae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • Recently, The use of the curtain wall method is increasing in construction. The curtain wall construction is widely applied to the exterior wall of the building for shortening construction period and economical efficiency. However, the replacement of deterioration of the weather resistance and structural behavior of the sealing material connecting the curtain wall method and the glass frame is necessary for introduction of the stable curtain wall method and quality improvement in accordance with KS F 4910 standard. In this study, the elastic restoring force test was performed in the external environment. In this study, the deterioration of the sealant was evaluated for structural sealants. In Korea, studies on the variable displacement behavior of structural sealants are lacked. In this study, the reproduced results in laboratory conditions are compared with the deteriorating conditions exposed to the external environment, and they are reflected in the design of sealing materials in the future. According to the results of the study, it was confirmed that the existing structure sealant meets the quality standard of KS F 4910, but in the conditions performed in this study, adhesion failure of the specimen and cracking of the surface occurred. Especially, in the weather resistance test, it is necessary to evaluate the long-term durability performance of the structural sealant used in the curtain wall method by checking the insoluble state of all the test pieces. Therefore, in order to apply a conventional structural sealant to the site, it is necessary to introduce another durability performance evaluation.

Reliability of Load-Carrying Capacity of RC Deep Beams (철근콘크리트 깊은 보의 내하력에 대한신뢰도 평가)

  • Cheon Ju-Hyun;Kim Tae-Hoon;Lee Sang-Cheol;Shin Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.955-962
    • /
    • 2005
  • Still no accurate theory exists for predicting ultimate shear strength of deep reinforced concrete beams because of the structural and material non-linearity after cracking. Currently, the load capacity assesment is performed for the upper structure of the bridges and containing non-reliability in the applications and results. The purpose in this study is to evaluate analytically the complex shear behaviors and normal strength for the reinforced concrete deep beams and to offer the accuracy load capacity assesment method based on the reliability theories. This paper presents a method for the load capacity assesment of reinforcement concrete deep beams using nonlinear finite element analysis. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material non-linearity is taken Into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. From the results, determine the reliability index for the failure base on the Euro Code. Then, calculate additional reduction coefficient to satisfy the goals from the reliability analysis. The proposed numerical method for the load capacity assesment of reinforced concrete deep beams is verified by comparison with the others methods.

Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars (세장비 및 대각철근 유무에 따른 고강도 철근보강 콘크리트 연결보의 전단성능)

  • Kim, Sun-Woo;Jang, Seok-Joon;Yun, Hyun-Do;Seo, Soo-Yeon;Chun, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • As per current seismic design codes, diagonally reinforced coupling beams are restricted to coupling beams having aspect ratio below 4. However, a grouped diagonally reinforcement detail makes distribution of steel bars in the beam much harder, furthermore it may result in poor construction quality. This paper describes the experimental results of concrete coupling beam reinforced with high-strength steel bars (SD500 & SD600 grades). In order to improve workability for fabricating coupling beams, a headed large diameter steel bar was used in this study. Two full-scale coupling beams were fabricated and tested with variables of reinforcement details and aspect ratio. To reflect real behavior characteristic of the beam coupling shear walls, a rigid steel frame system with linked joints was set on the reaction floor. As a test result, it was noted that cracking and yielding of reinforcement were initially progressed at the coupling beam-to-shear wall joint, and were progressed to the mid-span of the coupling beam, based on the steel strain and failure modes. It was found that the coupling beams have sufficient deformation capacity for drift ratio of shear wall corresponding to the design displacement in FEMA 450-1. In this study, the headed horizontal steel bar was also efficient for coupling beams to exhibit shear performance required by seismic design codes. For detailed design for coupling beam reinforced with high-strength steel, however, research about the effect of variable aspect ratios on the structural behavior of coupling beam is suggested.

An Experimental Study on the Flexural Behavior of Slab Repaired and Reinforced with Strand and Polymer Mortar (강연선과 폴리머 모르타르에 의해 보수보강된 슬래브의 휨거동에 대한 실험적 고찰)

  • Yang Dong-Suk;Hwang Jeong-Ho;Park Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.171-177
    • /
    • 2005
  • Even though the cost associated with the repair and rehabilitation of existing structures are rapidly increasing, vast number of the repaired and rehabilitated structures do not function properly as expected during their remaining service lives. This paper focused on the flexural behavior of reinforced concrete slabs repaired and reinforced by PS strand and polymer mortar in the tension face. The slabs have the size of 700${\times}120{\times}$2200 m and 700${\times}120{\times}$1300 mm. Variables of experiment were space of strengthening, chipping, the number of strand, the kind of mortar in this experimental study. Attention is concentrated upon overall bending capacity, deflection, ductility and failure mode of repaired and reinforced slabs. Test results show that deflection of repaired and reinforced slabs reduced to approximately $40 \%$ comparison to standard slabs. Boundary cracking of chipping slab started ultimate load afterward. Concrete-mortar interface cracked 64.5 kN in repaired slab with AP mortar and 36.0 kN in repaired slab with general polymer mortar. Reinforcement effect increased with reducing space of strand. Also, Reinforcement effects are more by strand than by polymer mortar.

A study on the structural behaviour of shotcrete and concrete lining by experimental and numerical analyses (숏크리트 및 콘크리트 라이닝의 역학적 거동에 관한 실험 및 수치해석적 연구)

  • 김재순;김영근
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.307-320
    • /
    • 1998
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause many problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. In this study, mechanical behaviour of a tunnel lining was examined by model tests and by numerical analyses. Especially the model test was examined for double linings including shotcrete and concrete lining. The model tests were carried out under various conditions taking different loading shapes, horizontal stresses, thicknesses of linings and double lining, vault opening behind the concrete lining and rock-like medium surrounding the lining. Due to horizontal stress, compressive stress prevailed on the lining. Thus the bearing capacity of the lining increased. The existence of a vault opening behind the concrete lining reduced the bearing capacity by the similar amount of reduction of concrete lining thickness. Rock-like medium cast around the side wall of the lining restrained the deflection of the lining, and the bearing capacity for cracking and failure increased vary much. In numerical analyses a algorithm which can analysis the double lining by introduction of interface element was developed. And the results of the numerical analyses were compared with the results of the model tests.

  • PDF

Behavior of RC Beam Strengthened with Advanced Lifting Hole Anchorage System (개선된 인양홀을 이용한 정착장치로 보강된 RC 보의 거동)

  • Oh, Min-Ho;Kim, Tae-Wan;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In order to strengthen RC structures, various strengthening methods have been used. Particularly, external tendon strengthening method is very popular method to strengthen damaged structures in terms of efficiency, ease, economics. In this study, improved anchorage elements using the lifting hole were proposed to strengthen PSC or RC girder without any damage. Two types of anchorage elements were proposed and these elements were applied on six RC beams. Also, three types of existing anchorage elements were applied on three RC beams. Otherwise, any anchorage element was not applied on one RC beam to used as a control beam. To analyse behavior of these elements, static load tests were carried out. Test variables were anchorage shapes, prestressing level on the steel bar and tendon profiles. Deflections, strains and modes of failure were recorded to examine the strengthening effects of the beams. Ductility index and tendon stress were analyzed by comparing cracking load, yielding load and ultimate load. As a result, proposed anchorage elements using lifting hole were superior to existing anchorage elements in terms of strengthening effect and furthermore, they showed ductile behavior based on energy method.

Study on the Crack and Thermal Degradation of GFRP for UPE Gelcoat Coated Underground Pipes Under the High Temperature Water-Immersion Environment (고온 수침 환경에서 UPE 겔코트 코팅된 지중 매설 파이프용 GFRP의 열화 및 크랙 발생 특성에 관한 연구)

  • Kim, Daehoon;Eom, Jaewon;Ko, Youngjong;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2018
  • Glass fiber reinforced polyester (GFRP) composites are widely used as structural materials in harsh environment such as underground pipes, tanks and boat hulls, which requires long-term water resistance. Especially, these materials might be damaged due to delamination between gelcoat and composites through an osmotic process when they are immersed in water. In this study, GFRP laminates were prepared by surface treatment of UPE (unsaturated polyester) gelcoat by vacuum infusion process to improve the durability of composite materials used in underground pipes. The composite surface coated with gelcoat was examined for surface defects, cracking, and hardness change characteristics in water-immersion environments (different temperatures of $60^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$). The penetration depth of cracks was investigated by micro CT imaging according to water immersion temperature. It was confirmed that cracks developed into the composites material at $75^{\circ}C$ and $85^{\circ}C$ causing loss of durability of the materials. The point at which the initial crack initiated was defined as the failure time and the life expectancy at $23^{\circ}C$ was measured using the Arrhenius equation. The results from this study is expected to be applied to reliability evaluation of various industrial fields where gelcoat is applied such as civil engineering, construction, and marine industry.