• Title/Summary/Keyword: cracking failure

Search Result 575, Processing Time 0.032 seconds

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

Crack Source location Technique for nam Concrete Beam using Acoustic Emission (음향방출을 이용한 무근콘크리트 보의 균열 발생원 탐사기법)

  • 한상훈;이웅종;조홍동;김동규
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.107-113
    • /
    • 2001
  • This study was conducted preliminarily to develop the crack source location technique for plain concrete beam using acoustic emission(AE). Before the main experiment, the test of virtual An source location was achieved in plain concrete block. The sensor layout was mutually compared between triangular layout and rectangular layout. As the results of test, AE source location by triangular layout was evaluated more effective than that by rectangular layout. The specimen to apply he source location technique was man in total nine specimens (each three in 40 %, 50%, 60% of W/C ratio) which the experiment variable was the compressive strength level(W/C ratio). The bending loading method is selected by cyclic loadings to evaluate the degree of concrete damage. It is seen that Kaiser effect and Felicity effect exists through analysis of AE parameters in coming failure experiment. As a result of analyzing the felicity ratio(FR) values, it is shown that this values can be used for evaluating the degree of concerto damage. AE activity is started highly at the 70% of failure load without the compressive strength level. Thus considered by a index in constructing the system of the failure warning at application of the field structure. And the results compared the real cracking location with the source location has perceived by AE monitoring before it is appeared the primary crack by visual observation.

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.

A Study on the Cause and Improvement of Crack in the Installing Structure of the Bulkhead of Aircraft (항공기 Bulkhead 체결구조의 균열 원인 및 개선에 관한 연구)

  • Choi, Hyoung Jun;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.448-454
    • /
    • 2020
  • This study aims to determine the cause of structural defects occurring during aircraft operations and to verify the structural integrity of the improved features. The fracture plane was analyzed to verify the characteristics of the cracks and the fatigue failure leading to the final fracture was determined by the progress of the cracks by the repeated load. During aircraft operations, the comparative analysis of the load measurement data at the cracks with the aircraft design load determined that the measured load was not at the level of 30% of the design to be capable of being damaged. A gap analysis resulted in a significant stress of approximately 32 ksi at the crack site. Pre-Load testing also confirmed that the M.S. was reduced by more than 50% from +0.71 to +0.43, resulting in a sharp increase in aircraft load and the possibility of cracking when combined. Thus, structural reinforcement and the removal of the gap for aircraft cracking sites improved the defect. Based on the structural strength analysis of the improvement features, the bulkhead has a margin of about +0.88 and the fitting feature is about +0.48 versus allowable stress. In addition, the life analysis results revealed an improvement of approximately 84000 hours.

Suggestion, Design, and Evaluation of a New Modified Double Tee Slabs (새로운 개량 더블티 슬래브의 제안, 설계 및 평가)

  • Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.809-820
    • /
    • 2008
  • A new modified full scale double tee slabs with the length of nib plate - 1,500 mm were suggested, designed, and experimentally evaluated up to the loading of flexural failure. This slabs were composed of the tee section which was same to original PCI double tee and the plate section which was modified in a new shape, and the prestressing force was applied at the bottom of tee section only. This specimens were made from the domestic precast factory. The safety and serviceability of the modified nib plate with the dapped ends were evaluated up to the ultimate flexural strength of tee section. As the experimental loading increased, the flexural crackings developed first in the bottom of the slab and they changed to the increased flexural shear and inclined shear crackings in the nib and dapped portion of the double tees. The suggested modified double tee slabs failed in ductile above the design loading with many evenly distributed flexural crackings. The thickness of nib plate - 250 mm does not show any cracking under the service loading and show several minor flexural cracking up to the ultimate state of tee portion. The proposed specimens were satisfied with the strength and ductility requirements in the design code provisions in the tests. Additional experimental tests are required to reduce the depth and tensile reinforcement of nib plate concrete for the practical use of this system effectively.

Comparative Study on the Flexural Performance of Concrete Reinforced with Polypropylene and Steel Fibers (폴리프로필렌 및 강섬유 보강콘크리트의 휨 성능에 관한 비교 연구)

  • Cho, Baiksoon;Lee, Jong-Han;Back, Sung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1677-1685
    • /
    • 2014
  • Short discrete fibers compounded with concrete can enhance the tensile resistance and ductility of concrete. Recently, the effectiveness of the reinforcement has increased according to the increasing length of steel fiber. However, the lengthening of steel fiber requires reducing the ratio of the fiber content to remain the workability and quality of concrete. Thus, the present study evaluated the flexural performance of fiber reinforced concrete with less than l.0% fiber volume ratios of steel fiber, 30mm and 60mm long, and polypropylene fiber, being evaluated as a good reinforcing material with chemical stability, long-term durability, and cost effectiveness. Concrete with more than 0.25% steel and 0.5% polypropylene fibers improved the brittle failure of concrete after reaching cracking strength. Concrete reinforced with polypropylene exhibited deflection-softening behavior, but that with more than 0.5% polypropylene delayed stress reduction and recovered flexural strength by 60 to 80% after cracking strength. In conclusion, concrete reinforced with more than 0.75% polypropylene could improve structural flexural performance. In particular, energy absorption capacity of reinforced concrete with 1.0% polypropylene fiber was similar to that with 0.5% and 0.7% steel fibers.

Shear Strength of Ultra-High Performance Fiber-Reinforced Concrete(UHPFRC) I-shaped Beams without Stirrup (강섬유 보강 초고성능 콘크리트(UHPFRC) I형 보의 전단 강도)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.53-64
    • /
    • 2017
  • Ultra-high performance fiber-reinforced concrete (UHPFRC) is characterized by a post-cracking residual tensile strength with a large tensile strain as well as a high compressive strength. To determine a material tensile strength of UHPFRC, three-point loading test on notched prism and direct tensile test on doubly notched plate were compared and then the design tensile strength is decided. Shear tests on nine I-shaped beams with varied types of fiber volume ratio, shear span ratio and size effect were conducted to investigate shear behavior in web. From the test results, the stress redistribution ability represented as diagonal cracked zone was quantified by inclination of principal stress in web. The test results shows that the specimens were capable of resistance to shear loading without stirrup in a range of large deformation and the strength increase with post-cracking behavior is stable. However at the ultimate state all test specimens failed as a crack localization in the damaged zone and the shear strength of specimens is affected by shear span ratio and effective depth. Strength predictions show that the existing recommendations should be modified considering shear span ratio and effective depth as design parameters.

Polygonal Grain-Based Distinct Element Modelling of Mechanical Characteristics and Transverse Isotropy of Rock (다각형 입자 기반 개별요소모델을 통한 암석의 역학적 특성과 횡등방성 모사)

  • Park, Jung-Wook;Park, Chan;Ryu, Dongwoo;Choi, Byung-Hee;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.235-252
    • /
    • 2016
  • This study presents a methodology to reproduce the mechanical behavior of isotropic or transversely isotropic rock using the polygonal grain-based distinct element model. A numerical technique to monitor the evolution of micro-cracks during the simulation was developed in the present study, which enabled us to examine the contribution of tensile cracking and shear cracking to the progressive process of the failure. The numerical results demonstrated good agreement with general observations from rock specimens in terms of the behavior and the evolution of micro-cracks, suggesting the capability of the model to represent the mechanical behavior of rock. We also carried out a parametric study as a fundamental work to examine the relationships between the microscopic properties of the constituents and the macroscopic behavior of the model. Depending on the micro-properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics. In addition, a numerical technique to reproduce the transversely isotropic rock was suggested and applied to Asan gneiss from Korea. The behavior of the numerical model was in good agreement with the results obtained in the laboratory-scale experiments of the rock.

Corrosion Behavior and Ultrasonic Velocity in RC Beams with Various Cover Depth (다양한 피복두께를 가진 RC 보의 부식 거동 및 초음파 속도)

  • Jin-Won Nam;Hyun-Min Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2023
  • With increasing corrosion in RC (Reinforced Concrete) structures, cracks occurred due to corrosion products and bearing load resistance decreased. In this study, corrosion was induced through an accelerated corrosion test (ICM: Impressed Current Method) with 140 hours of duration, and changes in USV (Ultra-Sonic Velocity), flexural failure load, and corrosion weight were evaluated before and after corrosion test. Three levels of cover depth (20 mm, 30 mm, and 40 mm) were considered, and the initial cracking period increased and the rust around steel decreased with increasing cover depth. In addition, the USV linearly decreased with decreasing cover depth and increasing amount of corrosion. In the flexural loading test, the bending capacity decreased by more than 10% due to corrosion, but a clear correlation could not be obtained since the corrosion ratio was small, so that the effect of slip was greater than that of reduced cross-sectional area of steel due to corrosion. As cover depth increased, the produced corrosion amount and USV changed with a clear linear relationship, and the cracking period due to corrosion could be estimated by the gradient of the measured corrosion current.

Cyclic Test for RC Frame with Infilled Steel Plate (강판채움벽을 갖는 RC 골조에 대한 반복가력 실험)

  • Choi, In Rak;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.115-125
    • /
    • 2009
  • An experimental study was performed to investigate the cyclic behavior of the reinforced concrete frame with infilled steel plate. For this purpose, three-story compositewalls using infilled steel plates (RCSPW) were tested. The parameters for this test were the reinforcement ratio of the column and opening in the infilled steel plate. A reinforced concrete infilled wall (RCIW) and a reinforced concrete frame (RCF) were also tested for comparison. The deformation capacity of the RCSPW specimen was significantly greater than that of the RCIW specimen, although the two specimens exhibited the same load-carrying capacity. Like the steel plate walls with the steel boundary frame, RCSPW specimens showed excellent strength, deformation capacity, and energy dissipation capacity. Furthermore, by using infilled steel plates, shear cracking and failure of the column-beam joint were prevented. By using a strip model, the stiffness and strength of the RCSPW specimens were predicted. The results were compared with the test results.