• Title/Summary/Keyword: cracking analysis

Search Result 997, Processing Time 0.025 seconds

The Case Study of High Strength Bolt Cadmium Embrittlement Failure (고강도 볼트 카드늄 취성파괴 사례연구)

  • Yoon, Young-In;Park, Chan-Wook;Sohn, Kyung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.244-249
    • /
    • 2008
  • It happened a failure on special bolt which supported main landing gear actuator up-lock rod of 00 aircraft. Fracture was occurred at end of center drilled hole and thread machined on bolt. Metallographic, fractographic, and other characteristics of embrittlement analysis and experiments carried out on the failed bolt to find out the reason. Bolt surface was cadmium electroplated(EP) to give lubrication and provide excellent corrosion resistance. Resultly, Bolt was failed due to cadmium embrittlement occurred during baking treatment as well as center drilled hole. for the failure that are relevant to failure analysis and prevention. For their successful functional application, cadmium EP bolts require proper and adequate baking treatment after electroplating, and is complete with no center drilled hole

  • PDF

A Method of Residual Stress Improvement by Plastic Deformation in the Pipe Welding Zone (소성변형에 의한 배관 용접부의 잔류응력 개선 방법)

  • Choi, Sang-Hoon;Wang, Ji-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.568-572
    • /
    • 2013
  • The main components, such as a reactor vessel, in commercial nuclear power plants have been welded to pipes with dissimilar metal in which Primary Water Corrosion Cracking (PWSCC) has been occurred. PWSCC has become a worldwide issue recently. This paper addresses the results of experimental and numerical analysis to prevent PWSCC by changing the stress profile that is tensile stress to compressive stress at interesting regions with plastic deformation generated by mechanical pressure. Based on the results of experimental and numerical analysis with a 6 inch pipe and dissimilar metal welded pipes, compressive stress 68~206 Mpa is generated at all locations of inner surface in the heat affected zone.

FE Analysis on In-Plane Behavior of Unreinforced Masonry Walls (비보강 조적벽체의 면내거동에 대한 FEM 해석)

  • 김장훈;권기혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.45-52
    • /
    • 2001
  • A series of unreinforced masonry (URM) walls were analytically investigated for a limited version of seismic in-plane performance. For this URM walls were assumed to be an elastic continuum and modeled as isotropic plane stress elements within which the nature of cracking was propagated. Accordingly, cracking mode of behavior in URM was modeled by smeared-crack approach. Total of 70 cases were considered for various parameters such as axial load ratio, aspect ratio and effective section area ratio due to the existence of opening, etc. The analysis results indicated a general tendency in base shear coefficient and deformability of URM walls for these variables.

  • PDF

Finite Element Analysis of the Behavior of Early-age Concrete (유한요소법에 의한 초기재령 콘크리트의 거동해석)

  • 송하원;조호진;박상순;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.10-17
    • /
    • 2001
  • With the introduction of durability examination into design code of concrete structure, a prediction of early-age behavior of concrete and its cracking resistance becomes very important. But, the early-age behaviors such as hydration, micro-structure development, moisture transport and mechanical properties development is quite complicated and coupled each other, and thus those can not be solved independently. One way to analyze those is to model their behaviors analytically and solve those computationally within a unified framework. In this paper, we propose a finite element technique to predict the early-age behaviors of concrete within the unified framework. The technique is applied to evaluatio of cracking in a massive concrete structure and then the analysis results are discussed.

  • PDF

Torsional Analysis of RC Beam Using Average Strains (평균변형률을 이용한 RC보의 비틀림 해석)

  • Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

Determining minimum non-connected concrete panel thickness and concrete type impact on seismic behavior of CSPSW

  • Mehdi Ebadi-Jamkhaneh
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.607-626
    • /
    • 2024
  • This study explores the use of advanced concrete types to improve the performance of composite steel shear walls (CSPSWs), particularly in delaying cracking and failure. A two-phase approach is implemented. Phase I utilizes non-linear finite element analysis and Gene Expression Programming to develop a novel method for determining the minimum concrete thickness required in CSPSWs. Phase II investigates the effect of concrete type, opening area, and location on the behavior of CSPSWs with openings. The results demonstrate that ultra-high performance concrete (UHPFRC) significantly reduces out-of-plane displacement and tensile cracking compared to normal concrete. Additionally, the study reveals a strong correlation between opening position and load-bearing capacity, with position L3 exhibiting the greatest reduction as opening size increases. Finally, UHPFRC's superior energy dissipation translatesto a higher equivalent viscous damping coefficient.

Failure Analysis of Top Nozzle Holddown Spring Screw for Nuclear Fuel Assembly (핵연료상단고정체 누름스프링 체결나사의 파손해석)

  • Koh, S.K.;Ryu, C.H.;Lee, Jeong-Jun;Na, E.G.;Baek, T.H.;Jeon, K.L.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1234-1239
    • /
    • 2003
  • A failure analysis of holddown spring screw was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure, a stress analysis of the top nozzle spring assembly was done using finite element analysis and a life prediction of the screw was made using a fracture mechanics approach. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.42 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF