• Title/Summary/Keyword: cracked concrete

Search Result 334, Processing Time 0.021 seconds

Damage detection in beams and plates using wavelet transforms

  • Rajasekaran, S.;Varghese, S.P.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.481-498
    • /
    • 2005
  • A wavelet based approach is proposed for structural damage detection in beams, plate and delamination of composite plates. Wavelet theory is applied here for crack identification of a beam element with a transverse on edge non-propagating open crack. Finite difference method was used for generating a general displacement equation for the cracked beam in the first example. In the second and third example, damage is detected from the deformed shape of a loaded simply supported plate applying the wavelet theory. Delamination in composite plate is identified using wavelet theory in the fourth example. The main concept used is the breaking down of the dynamic signal of a structural response into a series of local basis function called wavelets, so as to detect the special characteristics of the structure by scaling and transformation property of wavelets. In the light of the results obtained, limitations of the proposed method as well as suggestions for future work are presented. Results show great promise of wavelet approach for damage detection and structural health monitoring.

Practical design guidlines for semi-continuous composite braced frames

  • Liew, J.Y. Richard;Looi, K.L.;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.213-230
    • /
    • 2001
  • This paper presents a simplified approach for the design of semi-continuous composite beams in braced frames, where specific attention is given to the effect of joint rotational stiffness. A simple composite beam model is proposed incorporating the effects of semi-rigid end connections and the nonprismatic properties of a 'cracked' steel-concrete beam. This beam model is extended to a sub-frame in which the restraining effects from the adjoining members are considered. Parametric studies are performed on several sub-frame models and the results are used to show that it is possible to correlate the amount of moment redistribution of semi-continuous beam within the sub-frame using an equivalent stiffness of the connection. Deflection equations are derived for semi-continuous composite beams subjected to various loading and parametric studies on beam vibrations are conducted. The proposed method may be applied using a simple computer or spreadsheet program.

An Experimental Study on the Strengthening Effect of RC Beam with Carbon Fiber Grid (탄소섬유그리드를 이용한 RC보의 보강효과에 관한 실험적 연구)

  • Shim, Nak-Hoon;Kim, Jeong-Jae;Park, Young-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.107-118
    • /
    • 2002
  • The purpose of this study is to investigate the strengthening effect of RC beams with carbon fiber grid. Carbon fiber grid that is very lightweight and stronger than steel reinforcement does not rust or corrode and has a very high resistance to salt. In this study, five real size specimens which are strengthened with different types of carbon fiber grid are tested. With the results of this tests, we found the physical and mechanical properties of carbon fiber grid and polymer mortar which are used to strengthen the damaged or cracked reinforcement concrete beams. we also investigate the strengthening effect of carbon fiber grid on the five flexural test specimens that have cracks.

AN EVALUATION ON THE EFFECTIVE FLEXURAL RIGIDITY OF RC SLABS STRENGTHENED WITH CFRP SHEET AND GSP PLATE

  • Shim Jae-Joong;Song Seul-Ki;Oh Min-Ho;Cui-Jie;Park Sun-Kyu
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1272-1277
    • /
    • 2009
  • Since improved capacity for RC bridges has been required due to deterioration or increase in traffic, the deflection of cracked reinforced concrete slabs need to be reconsidered. Strengthening is known as the better way to improve capacity of bridges than reconstructing. In this paper, Fiber Reinforced Plastic (FRP) was introduced as one of the best strengthening methods for civil structures. The structures strengthened with FRPs can improve the strengthening capacity and serviceability. Therefore, CFRP sheet and Glass Fiber-Steel Composite Plate (GSP) in this research were used for strengthening slabs of RC bridges. Experimental data from the strengthening will be helpful to better understand the effect of the strengthening and effective flexural rigidity.

  • PDF

A Study on the Determination of Stress Intensity Factors in Orthotropic Plane Elastic Bodies (직교이방성 평면탄성체의 응력확대계수 결정에 관한 연구)

  • Jin, Chi Sub;Lee, Hong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.19-27
    • /
    • 1993
  • Recent work in the mechanics of fracture points out the desirability of a knowledge of the elastic energy release rate, the crack extension force, and the character of the stress field surrounding a crack tip in analyzing the strength of cracked bodies. The objective of this work is to provide a discussion of the energy rates, stress fields and the like of various cases for anisotropic elastic bodies which might be of interest. Reinforced concrete, wood, laminates, and some special types of elastic bodies with controlled grain orientation are often orthotropic. In this paper, determination of the stress intensity factors(SIFs) of orthotropic plane elastic body using crack tip singular element and fine mesh in near the crack tip is performed. A numerical method in this paper was used by displacement correlation method. A numerical example problem of an orthotropic cantilevered single edge cracked elastic body subjected to shear loading was analyzed, and the results of this paper are in good agreement with those of the others.

  • PDF

Prestress evaluation in continuous PSC bridges by dynamic identification

  • Breccolotti, Marco;Pozzaa, Francesco
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.463-488
    • /
    • 2018
  • In the last decades, research efforts have been spent to investigate the effect of prestressing on the dynamic behaviour of prestressed concrete (PSC) beams. Whereas no agreement has been reached among the achievements obtained by different Researchers and among the theoretical and the experimental results for simply supported beams, very few researches have addressed this problem in continuous PSC beams. This topic is, indeed, worthy of consideration bearing in mind that many relevant bridges and viaducts in the road and railway networks have been designed and constructed with this structural scheme. In this paper the attention is, thus, focused on the dynamic features of continuous PSC bridges taking into account the effect of prestressing. This latter, in fact, contributes to the modification of the distribution of the bending stress along the beam, also by means of the secondary moments, and influences the flexural stiffness of the beam itself. The dynamic properties of a continuous, two spans bridge connected by a nonlinear spring have been extracted by solving an eigenvalue problem in different linearized configurations corresponding to different values of the prestress force. The stiffness of the nonlinear spring has been calculated considering the mechanical behaviour of the PSC beam in the uncracked and in the cracked stage. The application of the proposed methodology to several case studies indicates that the shift from the uncracked to the cracked stage due to an excessive prestress loss is clearly detectable looking at the variation of the dynamic properties of the beam. In service conditions, this shift happens for low values of the prestress losses (up to 20%) for structure with a high value of the ratio between the permanent load and the total load, as happens for instance in long span, continuous box bridges. In such conditions, the detection of the dynamic properties can provide meaningful information regarding the structural state of the PSC beam.

Evaluation of Flexural Strength of Wide Sleepers with Reinforcing Bars for Quick-Hardened Concrete Track (보강철근이 적용된 급속경화궤도용 광폭침목의 보유 휨 내력 평가)

  • Bae, Young-Hoon;Lee, Il-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.702-709
    • /
    • 2018
  • A quick-hardened concrete track was developed to improve the aged ballasted track to a concrete track, and applied to earthworks and tunnels of main and urban railways. Rebars for reinforcement are not generally applied to prestressed concrete sleepers. On the other hand, many cracked sleepers have been observed in railroad sites. A wide sleeper, which is one of the main components of quick-hardened concrete track, should be structurally safe and crack-resistant in a ballasted and concrete track to avoid this problem. In particular, a wide sleeper manufactured by a post-tension method must have reinforcing bars applied to the rail-seat section. In this paper, static tests, dynamic tests, and fatigue tests were carried out to compare the flexural strength and crack resistance performance of a wide sleeper with and without reinforcing bars for a quick-hardened concrete track. As a result of the test, if some reinforcing bars are applied appropriately to the rail-seat section of a wide sleeper, it will be possible to prevent the occurrence of cracks, delay the expansion of the crack width, and the flexural fracture.

Nonlinear Finite Element Analysis of Reinforced and Prestressed Concrete Structures (철근 및 프리스트레스트 콘크리트 구조물의 비선형 유한요소 해석)

  • Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.269-279
    • /
    • 1994
  • This paper concentrates on the finite element analysis of concrete structures considering the material nonlinearity and time-dependent structural behavior. Using the rotating crack model among the smeared cracking model, the structural behavior up to ultimate load is simulated, and concrete is assumed to be an orthotropic material. Especially to include the tension stiffening effect in bending behavior, a criterion based on the fracture mechanics concept is introduced and the numerical error according to the finite element mesh size can be minimized through the application of the proposed criterion. Besides, the governing equation for steel is systematized by embeded model to cope with the difficulty in modeling of complex geometry. Finally, to trace the structural behavior with time under cracked and/or uncracked section, an algorithm for the purpose of time-dependent analysis is formulated in plane stress-strain condition by the age-adjusted effective modulus method.

  • PDF

Experimental and numerical simulating of the crack separation on the tensile strength of concrete

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Zhu, Zheming;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • Effects of crack separation, bridge area, on the tensile behaviour of concrete are studied experimentally and numerically through the Brazilian tensile test. The physical data obtained from the Brazilian tests are used to calibrate the two-dimensional particle flow code based on discrete element method (DEM). Then some specially designed Brazilian disc specimens containing two parallel cracks are used to perform the physical tests in the laboratory and numerically simulated to make the suitable numerical models to be tested. The experimental and numerical results of the Brazilian disc specimens are compared to conclude the validity and applicability of these models used in this research. Validation of the simulated models can be easily checked with the results of Brazilian tests performed on non-persistent cracked physical models. The Brazilian discs used in this work have a diameter of 54 mm and contain two parallel centred cracks ($90^{\circ}$ to the horizontal) loaded indirectly under the compressive line loading. The lengths of cracks are considered as; 10 mm, 20 mm, 30 mm and 40 mm, respectively. The visually observed failure process gained through numerical Brazilian tests are found to be very similar to those obtained through the experimental tests. The fracture patterns demonstrated by DEM simulations are mostly affected by the crack separation but the tensile strength of bridge area is related to the fracture pattern and failure mechanism of the testing samples. It has also been shown that when the crack lengths are less than 30 mm, the tensile cracks may initiate from the cracks tips and propagate parallel to loading direction till coalesce with the other cracks tips while when the cracks lengths are more than 30 mm, these tensile cracks may propagate through the intact concrete itself rather than that of the bridge area.

Some Critical Problems in Seismic Design of High-Rise RC Building frame Systems (고층 RC 건물골조시스템의 내진설계상 몇 가지 주요 문제점)

  • Lee Han-Seon;Jeong Seong-Wook;Ko Dong-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.727-734
    • /
    • 2005
  • High-rise residential buildings these days tend to adopt a building frame system as primary earthquake resisting structural system for some architectural reasons. But there exist several ambiguities in designing such building frame systems according to current codes with regards to : the effective stiffness property of RC cracked section in static and dynamic analyses, analytical model to evaluate story drift ratio, and deformation compatibility requirements of frames. The comparative study for these issues by appling KBC 2005 to a typical building frame system shows that demands of member strength and story drift ratio can be different significantly depending on engineer's Interpretation and application of code requirements. And a building frame system can be noneconomical, compared with the dual system, because of higher demands on strength or ductility in both frames and shear walls.