• Title/Summary/Keyword: crack-width

Search Result 646, Processing Time 0.023 seconds

The Application of Non-destructive Method in Measuring of Concrete Crack (콘크리트 균열측정에 대한 비파괴시험의 적용)

  • 민정기;김성완;성찬용;조일호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.124-129
    • /
    • 1998
  • The ultrasonic pulse measurements can be used to detect the development of cracks in concrete structures and to check deterioration due to frost or chemical action. An estimate of the depth of a visible crack at the surface can be obtained by measuring the transit times that across the crack for two different arrangements of the transducers placed on the surface. In this paper, the concrete cracks that artificially introduced crack of width 1, 2mm and depth 20, 40, 60, 80mm were measured by Tc-To, Direct and Indirect Method. The test results indicate that the Tc-To Method is the most useful in measuring crack of concrete structures. And the crack depth calculated by the Direct and Indirect Method is shown bigger than artificially introduced real crack depth.

  • PDF

Disaster Assessment for the Civil Infrastructure through a Technique of Crack Propagation (변상진전기법을 이용한 토목구조물 피해평가)

  • Park, Si-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.907-910
    • /
    • 2010
  • This study has developed a numerical analysis technique newly which can evaluate the damage propagation characteristics of civil infrastructures. To do this, numerical techniques are incorporated for the concrete members up to the compressive damage due to the bending compressive forces after the tensile crack based on the deformation mechanism. Especially, for the compressive damage stage after the tensile crack, the crack propagation process will be analyzed numerically using the concept of an equivalent plastic hinged length. Using this concept, we investigate the reasonability of the developed module by comparing commercial program for the tunnel structure. It can be established from this study that section forces, such as axial forces and the moment cracks takes place, can be related to the width of the crack making it possible to analyze the crack extension.

  • PDF

A Study for Mutual Interference Between Circular Inclusion and Crack in Finite-Width Plate by Boundary Element Method (경계요소법에 의한 유한폭 판재내의 원형 함유물과 균열의 상호간섭에 대한 연구)

  • 박성완
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1474-1482
    • /
    • 1994
  • In order to study the influence of a circular inclusion on a stress field neat a crack tip, mutual interference of a crack and the circular inclusion is analyzed by using the two dimensional boundary element method program made for the analysis of a bimaterial inclusion. The stress intensity factor of an inclusion which has small stiffness is a little greater than that of large stiffness in the near-by crack tip, and similar values tends to appear for distant crack tips. A line crack shows the repetition phenomena which caused by stress mutual interference depending on the radius and stiffness of an inclusion, and the repetition phenomena becoms weak in the inclusion which has large stiffness. Stress mutual interference shows repetition phenomena after extension of a line crack by the length of the radius of the inclusion which has small stiffness.

The effect of the excessive loading and welding anisotropy on the fatigue crack propagation behavior of TMCP steel for offshore structure (해양구조물용 TMCP강의 피로균열진전거동에 미치는 용접이방성 및 과대하중의 영향)

  • ;;三澤啓志
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.82-88
    • /
    • 2000
  • The effect of the welding for the offshore structure in the TMCP steel on the fatigue crack propagation rate and crack opening-and-closure behavior was examined. The welding anisotropy of the TMCP steel and crack propagation characteristics of the excessive loading were reviewed. (1) It seemed that a heat which was generated by the welding made a compressive residual stress over the base metal, so fatigue crack propagation rate was placed lower than in case of the base metal. (20 In the base metal, an effect of the anisotropy which has an effect of fatigue crack propagation rate of the excessive load and the constant amplitude laos was not found but in the welding material case, fatigue crack propagation rate of the excessive load in the specimen of the width direction was located in the retard side as compared with a specimen rolling direction. (3) A crack opening ratio of the used TMCP stel in this study was not changed after excessive loading but a retard phenomenon of crack propagation was observed. Consequently, it was thought that all of the retard phenomenon of crack propagation did not only a cause of the crack opening-and-closure phenomenon.

  • PDF

Effect of dissimilar metal SENB specimen width and crack length on stress intensity factor

  • Murthy, A. Ramachandra;Muthu Kumaran, M.;Saravanan, M.;Gandhi, P.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1579-1586
    • /
    • 2020
  • Dissimilar metal joints (DMJs) are more common in the application of piping system of many industries. A 2- D and 3-D finite element analysis (FEA) is carried out on dissimilar metal Single Edged Notch Bending (DMSENB) specimens fabricated from ferritic steel, austenitic steel and Inconel - 182 alloy to study the behavior of DMJs with constraints by using linear elastic fracture mechanics (LEFM) principles. Studies on DMSENB specimens are conducted with respect to (i) dissimilar metal joint width (DMJW) (geometrical constraints) (5 mm, 10 mm, 20 mm, 30 mm and 50 mm) (ii) strength mismatch (material constraints) and (iii) crack lengths (16 mm, 20 mm and 24 mm) to study the DMJ behavior. From the FEA investigation, it is observed that (i) SIF increases with increase of crack length and DMJWs (ii) significant constraint effect (geometry, crack tip and strength mismatch) is observed for DMJWs of 5 mm and 10 mm (iii) stress distribution at the interfaces of DMSENB specimen exhibits clear indication of strength mismatch (iv) 3-D FEA yields realistic behavior (v) constraint effect is found to be significant if DMJW is less than 20 mm and the ratio of specimen length to the DMJW is greater than 7.4.

An Estimation of Constraint Factor on the ${\delta}_t$ Relationship (J-적분과 균열선단개구변위에 관한 구속계수 m의 평가)

  • 장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.24-33
    • /
    • 2000
  • This paper investigates the relationship between J-integral and crack tip opening displacement, ${\delta}_t$ using Gordens results of numerical analysis. Estimation were carried out for several strength levels such as ultimate, flow, yield, ultimate-flow, flow-yield stress to determine the influence of strain hardening and the ratio of crack length to width on the $J-{\delta}_t$ relationship. It was found that for SE(B) specimens, the $J-{\delta}_t$ relationship can be applied to relate J to ${\delta}_t$ as follows $J=m_j{\times}{\sigma}_i{\times}{\delta}_t$ where $m_j=1.27773+0.8307({\alpha}/W)$, ${\sigma}_i:{\sigma}_U$, ${\sigma}_{U-F}={\frac{1}{2}} ({\sigma}_U+{\sigma}_F$), ${\sigma}_F$, ${\sigma}_F}$ $Y=({\sigma}_F+{\sigma}_Y)$, ${\sigma}_Y$

  • PDF

Self-healing and leakage performance of cracks in the wall of a reinforced concrete water tank

  • Gao, Lin;Wang, Mingzhen;Guo, Endong;Sun, Yazhen
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.727-741
    • /
    • 2019
  • A reinforced concrete water tank is a typical functional liquid storage structure and cracks are the greatest threat to the liquid storage structure. Tanks are readily cracked due to seismic activity, thereby leading to the leakage of the stored liquid and a loss of function. In order to study the effect of cracks on liquid storage tanks, self-healing and leakage tests for bending cracks and through cracks in the walls of a reinforced concrete water tank were conducted. Material performance tests were also performed. The self-healing performance of bending cracks in a lentic environment and through cracks in a lotic environment were tested, thereby the self-healing width of bending micro-cracks in the lentic environment in the short term were determined. The through cracks had the capacity for self-healing in the lotic environment was found. The leakage characteristics of the bending cracks and through cracks were tested with the actual water head on the crack. The effects on liquid leakage of the width of bending cracks, the depth of the compression zone, and the acting head were determined. The relationships between the leakage rate and time with the height of the water head were analyzed. Based on the tests, the relationships between the crack characteristics and self-healing as well as the leakage were obtained. Thereby the references for water tank structure design and grading earthquake damage were provided.

Analysis of Failure Behavior of the Box Culvert with 3-Axes Loading System (3축 가력시스템에 의한 박스형 암거의 파괴거동 분석)

  • Woo, Sang-Kyun;Kwon, Yong-Gil;Cho, Jun-Hyong;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.142-148
    • /
    • 2009
  • This paper is to investigate the fracture behavior characteristics of box culvert and incremental crack width of upper slab for the incremental loading by the 3-axis loading system. In the 3-axes loading system, loading directions are upper side, left and right side which simulate earth pressure and static traffic load. With the incremental load, crack patterns is investigated on the upper slab, left and right wall. Especially, on the upper slab, crack width is measured by crack gage. Based on the experimental results, structural internal force indices of box culvert are estimated quantitatively.

Improvement Measures for the Defect Determination and the Application of Repair Method for Interlayer Cracks in Apartment Houses (공동주택 층간균열의 하자판정 및 보수공법 적용에 대한 개선방안)

  • Choi, Sangjin;Shin, Manjoong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.5
    • /
    • pp.23-33
    • /
    • 2022
  • Cracks, which account for the largest proportion of defect lawsuits in apartment buildings, are not clear on the criteria for defect determination, so judgments about defects are mixed. Interlayer cracks, which account for most of the crack defect judgment amount, tend to be judged as defects regardless of the crack width or condition, and repair methods are mostly set uniformly. This starts from the problem that the standards of the Ministry of Land, Infrastructure and Transport and the Construction Appraisal Practice, which the courts use as standards, do not match. It is necessary to establish a defect determination standard that can be applied to all stakeholders through the amendment of laws and the revision of the Court Appraisal Practice. In addition, it is necessary to apply the crack repair method according to the width and condition of the interlayer crack. If the defect determination and the application of the repair method for cracks are rationalized, it could serve as an opportunity to change the current trend of defect disputes that rely only on litigation.

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.