• 제목/요약/키워드: crack velocity

검색결과 288건 처리시간 0.027초

등방성/직교이방성 이종재료의 진전 계면균열에 대한 동적 광탄성 실험 하이브리드 법 개발 (Development of the Dynamic Photoelastic Hybrid Method for Propagating Interfacial Crack of Isotropic/Orthotropic Bi-materials)

  • 황재석;신동철;김태규
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1055-1063
    • /
    • 2001
  • When the interfacial crack of isotropic/orthotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for the bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid developed in this research are valid. Separating method of stress components is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 69∼71% of Rayleigh wave velocity of epoxy resin. The near-field stress components of bonded interface of bimaterial are similar with those of pure isotopic material and two dissimilar isotropic bimaterials under static or dynamic loading, but very near-field stress components of bonded interface of bimaterial are different from those.

초음파 속도법을 이용한 콘크리트 구조물의 균열깊이 측정 (Crack Depth Evaluation of Concrete Structures using Ultrasonic Pulse Velocity method)

  • 오병환;김광수;김세훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.659-662
    • /
    • 1999
  • Ultrasonic pulse velocity method is employed for evaluation of crack depth in concrete structures. Due to the heterogeneous nature of concrete and the indirect transmission arrangement for the transit time measurement through the surface-opening cracks in concrete structures, ultrasonic pulse velocity has so many variations as crack depths and transmission lengths vary. In this study, ultrasonic pulse velocity method is investigated to evaluate the surface-opening crack depth of concrete slabs, reinforced concrete slabs, reinforced concrete flexural members. the resent study gives a modified method for deminishing errors in transit time measurements and show limitations to the evaluation of crack depth in reinforced concrete structures.

  • PDF

준등방성 복합적층판의 저속충격에 의한 손상특성 (Damage Characteristics of Quasi Isotropic Composite Laminates Subjected to Low Velocity Impact)

  • 김재훈;전제춘
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.135-141
    • /
    • 1997
  • Low velocity impact test and compressive residual strength test after impact were performed by using Hercules AS4/3501-6[45/0/-45/90]$_{2s}$ laminated plate to investigate the low velocity impact damage behavior and the post-impact strength degradation on orthotropic composite laminate plate. Due to the lateral impact losd, the load path showed "" shape according to the laminate central deflection. Damage in a laminate occurs by inclined matrix crack at the damage initiation load stage and vertical matrix crack, occurs on the outer surface. Evaluating the compressive residual strength after the low velocty impact test, it could be found that there is a transient range where the compressive residual strength drop suddenly in the initial damage which is in the matrix crack range and the initial delamination area. is in the matrix crack range and the initial delamination area.

  • PDF

복합재료내의 계면균열의 인성과 균열진전 거동 (Toughness and Crack Propagation Behavior of The Interfacial Crack in Composite Materials)

  • 최병선
    • 한국산업융합학회 논문집
    • /
    • 제6권4호
    • /
    • pp.291-298
    • /
    • 2003
  • Interfacial crack problems between fiber and matrix in composite materials are discussed. A series of interfacial crack initiation and propagation experiments are conducted using the biaxial loading device for various mode-mixes. Normal crack opening displacement (NCOD) is measured near crack front by a crack opening interferometry and used for extracting fracture parameters. From mixed mode interfacial crack initiation experiments, large increase in toughness with shear components is observed. Initial velocity of crack propagation is very dependent upon the mode-mixes. It increased with positive mode-mix due to the increase of stress singularities ahead of crack front and decreased with negative mode-mix resulting from the increase of the degree of compressive stress behind the crack front. Crack propagation was less accelerated with positive mode-mix than the negative mode-mix.

  • PDF

경기도 하남시 인근 호상편마암 지역에서 Suspension P-S 속도검층 자료분석 (Data Analysis of Suspension P-S Velocity Logging in Banded Gneiss Area around Hanam, Gyeonggi Province)

  • 유영철;송무영;임국묵
    • 지질공학
    • /
    • 제17권4호
    • /
    • pp.623-631
    • /
    • 2007
  • 경기도 하남시 풍산동 소재 시험시추공에서 획득된 SPS 속도검층자료를 이용하여 이 지역에 분포하는 호상편마암의 동적물성치를 추정하였다. 연구방법은 전처리과정과 속도분석, 감쇄지수와 관련된 Q factor를 도출하였고 단열정보와 탄성파 속도관계식을 산출하였다. 신선한 암반의 Vp는 5,559m/s, Vs는 3,063m/s로 나타났으며 포아슨비는 0.28로 해석되었다. 이를 이용하여 동적물성치를 구하였고 초음파 텔레뷰어로 산출한 단열정보를 이용하여 단열에 따른 초동지연, 진폭변화비, 속도와의 상관성을 파악하였다. 측정된 검층공은 미세단열이 대부분이며 이러한 경암내 미세단열 지역에서는 단열틈 크기와 단열빈도가 탄성파 속도의 변수로 작용하는 것으로 나타난다.

크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구 (A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass)

  • 손인수;안성진;윤한익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1625-1630
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of the transverse open cracks and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. that is, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

  • PDF

Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone

  • Maruvanchery, Varun;Kim, Eunhye
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.57-67
    • /
    • 2019
  • Water-induced strength reduction is one of the most critical causes for rock deformation and failure. Understanding the effects of water on the strength, toughness and deformability of rocks are of a great importance in rock fracture mechanics and design of structures in rock. However, only a few studies have been conducted to understand the effects of water on fracture properties such as fracture toughness, crack propagation velocity, consumed energy, and microstructural damage. Thus, in this study, we focused on the understanding of how microscale damages induced by water saturation affect mesoscale mechanical and fracture properties compared with oven dried specimens along three notch orientations-divider, arrester, and short transverse. The mechanical properties of calcite-cemented sandstone were examined using standard uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) tests. In addition, fracture properties such as fracture toughness, consumed energy and crack propagation velocity were examined with cracked chevron notched Brazilian disk (CCNBD) tests. Digital Image Correlation (DIC), a non-contact optical measurement technique, was used for both strain and crack propagation velocity measurements along the bedding plane orientations. Finally, environmental scanning electron microscope (ESEM) was employed to investigate the microstructural damages produced in calcite-cemented sandstone specimens before and after CCNBD tests. As results, both mechanical and fracture properties reduced significantly when specimens were saturated. The effects of water on fracture properties (fracture toughness and consumed energy) were predominant in divider specimens when compared with arrester and short transverse specimens. Whereas crack propagation velocity was faster in short transverse and slower in arrester, and intermediate in divider specimens. Based on ESEM data, water in the calcite-cemented sandstone induced microstructural damages (microcracks and voids) and increased the strength disparity between cement/matrix and rock forming mineral grains, which in turn reduced the crack propagation resistance of the rock, leading to lower both consumed energy and fracture toughness ($K_{IC}$).

수정 특이-파괴진행대이론의 파괴특성에 대한 균열속도의 영향 (Effects of Crack Velocity on Fracture Properties of Modified S-FPZ Model)

  • 연정흠
    • 콘크리트학회논문집
    • /
    • 제16권4호
    • /
    • pp.511-520
    • /
    • 2004
  • 이 연구에서는 기존의 콘크리트 실험에서 평가된 파괴에너지를 수정 특이-파괴진행대 이론에 대해 해석하였다. 수정 특이-파괴진행대 이론은 균열성장에 대한 에너지해방률과 균열면의 파괴진행에 대한 균열면응력-균열폭 관계의 두 파괴특성을 필요로 한다. 해석결과 균열면응력-균열폭 관계는 시험편의 형상과 균열속도에 민감하지 않았다. 파괴진행대에서 파괴에너지율은 파괴진행대가 완전히 형성될 때까지 균열성장길이에 선형으로 증가하였으며, 이후에는 파괴에너지밀도로 일정한 값을 유지하였다. 변형에너지방출률은 시험편의 형상과 균열속도에 큰 변화를 보였으며, 균열속도에 대해서는 선형의 대수함수로 표현될 수 있다. 균열성장에 대한 변형에너지방출률의 변화는 다른 실험의 미세균열의 성장과 국부화 그리고 완전 파괴진행대의 형성에 대한 이론적인 근거를 보여준다.

고분자재료의 동적 파괴거동에 관한 연구 (Dynamic Fracture Behavior of Some Polymeric Materials)

  • 이억섭;한정우;한문식
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1630-1641
    • /
    • 1995
  • The dynamic stress intensity factors (DSIF ; $K_{I}$$^{dyn}$) were studied in some polymeric materials using caustics method with a high speed camera system. Also crack tip propagation speed was measured by dynamic crack propagation velocity measuring device. To calculate DSIF a finite element analysis program-INha Stress Analysis Moving CRack(INSAMCR) was utilized. Dynamic fracture characteristics were investigated to verify a relationship between DSIF and crack tip propagation speed and acceleration in PMMA, Homalite-100 and Polycarbonate. The relationship between dynamic stress intensity factor and crack tip velocity revealed typical shapes. Measured crack tip acceleration data envelope converges to the zero level with increasing DSIF. Equivalently crack tip velocities show a wide spread range at low values of DSIF, but become a constant with a higher DSIF. $1.2MPa{\sqrt{m}}$, $1.4MPa{\sqrt{m}}$ and $1.3 MPa{\sqrt{m}}$ were obtained as $K_{I}$$^{dyn}$ values to arrest the dynamic crack for PMMA, Homalite-100 and Polycarbonate, respectively. INSAMCR was run to verify experimental results in PMMA and shows good agreementment.

저속 충격을 받는 복합 재료 적층판의 층간 분리 성장에 관한 연구 (A Study on the Delamination Growth in Composite Laminates Subjected to Low-Velocity Impact)

  • 장창두;송하철;김호경;허기선;정종진
    • 한국해양공학회지
    • /
    • 제16권6호
    • /
    • pp.55-59
    • /
    • 2002
  • Delamination means that cracking occurs on the interface layer between composite laminates. In this paper, to predict the delamination growth in composite laminates subjected to low-velocity impact, the unit load method was introduced, and an eighteen-node 3-D finite element analysis, based on assumed strain mixed formulation, was conducted. Strain energy release rate, necessary to determine the delamination growth, was calculated by using the virtual crack closure technique. The unit load method saves the computation time more than the re-meshing method. The virtual crack closure technique enables the strain energy release rate to be easily calculated, because information of the singular stress field near the crack tip is not required. Hence, the delamination growth in composite laminates that are subjected to low-velocity impact can be efficiently predicted using the above-mentioned methods.