• Title/Summary/Keyword: crack shape

Search Result 624, Processing Time 0.022 seconds

A Numeric Modelling Technique for the Shape Development of Fatigue Crack (피로 균열 형상 진전의 수치 모델링 기법에 관한 연구)

  • Han, Moon-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.225-233
    • /
    • 1999
  • This paper describes a versatile finite element technique which has been used to investigate of wide range of structural defects of practical importance. The procedure automatically remeshes the three-dimensional finite element model during the stages of crack growth. Problems analyzed to date include the surface cracks in leak-before-break situations, the development of quarter-elliptical corner defects, planar semi-elliptical surface defects and the fatigue growth of defects.

  • PDF

Numerical Simulation of Fatigue Growth of Multiple Surface Crack under Fatigue Load (피로 하중하에서의 복수표면크랙진전에 관한 수치시뮬레이션)

  • 한문식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.133-141
    • /
    • 2002
  • This paper describes a versatile finite element technique which has been used to investigate wide range of structural defects of practical importance. The procedure automatically remeshes the three-dimensional finite element model during the stages of crack growth. Problems include the surface cracks in leak-before-break situations, the shape development of multiple surface defects.

Variation of fatigue crack propagation behavior based on the shape of the interaction between two cracks (두 크랙의 간섭형태에 따른 피로크랙전파거동의 변화)

  • Song, Sam-Hong;Choe, Byeong-Ho;Bae, Jun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1097-1105
    • /
    • 1997
  • Because of the existence of stress interaction field made by other defects and propagating cracks, the structure may be weakened. Therefore in this study, the crack behavior in the interaction field made by two different cracks is studied experimentally. In the experiment, vertical distance between two cracks and applied stress are varied to make different stress interacted field. In addition, the effect of plastic zone is used to examine crack propagation path and rate. Three types of crack propagation in the interacted field were found, and crack propagating path and rate of two cracks were significantly changed according to different applied stress as each crack propagates. And the results are attributed to the effect of the size and shape of the plastic zone.

Effect of Crack Orientation on Spatial Randomness of Fatigue Crack Growth Rate in FSWed 7075-T651 Aluminum Alloy Joints (마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파율의 공간적 변동성에 미치는 균열 방향의 영향)

  • Jeong, Yeui-Han;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2014
  • In this investigation, the effect of crack orientation on spatial randomness of fatigue crack growth rate (FCGR) in friction stir welded (FSWed) 7075-T651 aluminum alloy joints has been statistically analyzed by Weibull distribution. The fatigue crack growth tests are conducted under three different constant stress intensity factor range (SIFR) control at room temperature with R = 0.1 and frequency 10Hz on compact tension (CT) specimen machined at base metal (BM) and weld metal (WM). The experimental fatigue crack growth rate data were obtained for two types of specimens having LT and TL orientations. LT specimens both base metal and weld metal showed higher fatigue crack growth rate as compared to TL specimens. In the lower SIFR region, FCGR were found to be almost 3 times higher in higher SIFR region. The shape parameter of Weibull both LT and TL orientation for FCGR was increased with increasing SIFR, the scale parameter was also increased with increasing SIFR. The smallest value of the shape parameter was shown in weld metal specimens having LT orientation at lower SIFR region.

Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks

  • Li, Yuebing;Jin, Ting;Wang, Zihang;Wang, Dasheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2638-2651
    • /
    • 2020
  • Nozzle corner cracks present at the intersection of reactor pressure vessels (RPVs) and inlet or outlet nozzles have been a persistent problem for a number of years. The fracture analysis of such nozzle corner cracks is very important and critical for the efficient design and assessment of the structural integrity of RPVs. This paper aims to perform an engineering critical assessment of RPVs with nozzle corner cracks subjected to several transients accompanied by pressurized thermal shocks. The critical crack size of the RPV model with nozzle corner cracks under transient loading is evaluated on failure assessment curve. In particular, the influence of cladding on the crack initiation of nozzle corner crack under thermal transients is studied. The influence of primary internal pressure and secondary thermal stress on the stress field at nozzle corner and SIF at crack front is analyzed. Finally, the influence of different crack size and crack shape on the final critical crack size is analyzed.

Shape Optimization of Structures with a Crack (균열이 있는 구조물의 형상 최적화)

  • 한석영;송시엽;백춘호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.298-303
    • /
    • 2001
  • Most of mechanical failures are caused by repeated loadings and therefore they are strongly related to fatigue. To avoid the failures caused by fatigue, determination of an optimal shape of a structure is one of the very important factors in the initial design stage. Shape optimization for a compact tension specimen in opening mode in fracture mechanics, was accomplished by the linear elastic fracture mechanics and the growth-strain method in this study. Also shape optimization for a cantilever beam in mixed mode was carried out by the same techniques. The linear elastic fracture mechanics was used to estimate stress intensity factors and fatigue lives. And the growth-strain method was used to optimize the shape of the initial shape of the specimens. From the results of the shape optimization, it was found that shapes of two types of specimens and a cantilever beam optimized by the growth-strain method prolong their fatigue lives very much. Therefore, it was verified that the growth-strain method is an appropriate technique for shape optimization of a structure having a crack.

  • PDF

Development of Crack Examination Algorithm Using the Linearly Integrated Hall Sensor Array (선형 홀 센서 배열을 사용한 결함 검사 알고리즘 개발)

  • Kim, Jae-Jun;Kim, Byoung-Soo;Lee, Jin-Yi;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.30-36
    • /
    • 2010
  • Previous researches show that linearly integrated Hall sensor arrays (LIHaS) can detect cracks in the steel structure fast and effectively This paper proposes an algorithm that estimates the size and shape of cracks for the developed LIHaS. In most nondestructive testing (NDT), just crack existence and location are obtained by processing 1-dimensional data from the sensor that scans the object with relative speed in single direction. The proposed method is composed with two steps. The first step is constructing 2-dimensionally mapped data space by combining the converted position data from the time-based scan data with the position information of sensor arrays those are placed in the vertical direction to the scan direction. The second step is applying designed Laplacian filter and smoothing filter to estimate the size and shape of cracks. The experimental results of express train wheels show that the proposed algorithm is not only more reliable and accurate to detecting cracks but also effective to estimate the size and shape of cracks.

Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

A simple method to detect cracks in beam-like structures

  • Xiang, Jiawei;Matsumoto, Toshiro;Long, Jiangqi;Wang, Yanxue;Jiang, Zhansi
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.335-353
    • /
    • 2012
  • This study suggests a simple two-step method for structural vibration-based health monitoring for beam-like structures which only utilizes mode shape curvature and few natural frequencies of the structures in order to detect and localize cracks. The method is firstly based on the application of wavelet transform to detect crack locations from mode shape curvature. Then particle swarm optimization is applied to evaluate crack depth. As the Rayleigh quotient is introduced to estimate natural frequencies of cracked beams, the relationship of natural frequencies and crack depths can be easily obtained with only a simple formula. The method is demonstrated and validated numerically, using the numerical examples (cantilever beam and simply supported shaft) in the literature, and experimentally for a cantilever beam. Our results show that mode shape curvature and few estimated natural frequencies can be used to detect crack locations and depths precisely even under a certain level of noise. The method can be extended for health monitoring of other more complicated structures.

Statistical Distribution of Fatigue Crack Growth Rate for Friction Stir Welded Joints of Al7075-T651 (Al7075-T651의 마찰교반용접된 접합부의 피로균열전파율의 통계적 분포)

  • Ahn, Seok-Hwan;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.86-93
    • /
    • 2013
  • This paper deals with the effects of driving force and material properties on statistical distribution of fatigue crack growth rate (FCGR) for the friction stir welded joints of Al 7075-T651 aluminum plate. In this work, the statistical probability distribution of fatigue crack growth rate was analyzed by using our previous constant stress intensity factor range controlled fatigue crack growth test data. As far as this study are concerned, the statistical probability distribution of fatigue crack growth rate for the friction stir welded (FSWed) joints was found to evaluate the variability of fatigue crack growth rate for base metal (BM), heat affected zone (HAZ) and weld metal (WM) specimens. The probability distribution of fatigue crack growth rate for FSWed joints was found to follow well log-normal distribution. The shape parameter of BM and HAZ was decreased with increasing the driving force, however, the shape parameter of WM was decreased and increased with increasing the driving force. The scale parameter of BM, HAZ and WM was increased with the driving force.