• Title/Summary/Keyword: crack shape

Search Result 621, Processing Time 0.029 seconds

Fatigue Crack Behavior of Triple Piece Spot by Crack Tip Opening Angle of Welded Specimen (3중 점용접재의 귤열단 열림각(CTOA)을 이용한 피로균열거동)

  • Song, Sam-Hong;Joo, Dong-Ho;Yang, Yun-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.74-83
    • /
    • 2001
  • In this study, internal fatigue crack initiation and propagation behavior were investigated by triple piece spot welded specimen. To estimate fatigue life of the specimen varied with shape and thickness, Crack tip opening angle(CTOA) correlated with stress intensity factor was used as the stiffness parameter. The relation between fatigue life and CTOA can be arranged by the quantitative equation for each specimen by experiment. In addition, the variation of stress distribution was solved and the effect on fatigue crack behavior was examined by finite element method(FEM).

  • PDF

Design of Cold Heading Process of a Screw for Storage Parts (저장매체용 스크류의 냉간 헤딩 공정 설계에 대한 연구)

  • Seo, W.S.;Min, B.W.;Park, K.;Ra, S.W.;Lee, S.H.;Kim, J.H.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2011
  • Fasteners are used to join the various electronic products and machines. So, the quality and reliability of the fastener are strongly requested. In this study, the analyses of the multi-stage cold forging of TORX screws for storage parts are carried out. In manufacturing of TORX screws, crack and folding defects are observed. Therefore, the analysis is focused on the prediction of the defects. Based on the analysis results, the upper die and process conditions are redesigned to reduce the defects. The upper die shape for preform forming is redesigned to prevent folding and sharp shape change. The Cockroft-Latham damage criterion is introduced to predict the crack initiation. Analysis results shows that the maximum Cockroft-Latham damage value is decreased by 40% in the forming using the modified upper die.

The Weldability of Aluminum Ball in Electrolyte Injection Hole by Nd:YAG Laser (리튬이온전지의 전해액 주입구 볼에 대한 Nd:YAG 레이저 용접성)

  • Kim, Jong-Do;Yoo, Seung-Jo;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.740-745
    • /
    • 2006
  • This study suggested the occurrence source of weld-defects and its solution methods in a welding of Electrolyte injection hole by pulsed Nd:YAG laser. In experiment, the ramp down was used in order that solidification crack was removed. Furthermore. shrinkage stress and heat input were reduced by changing of weld trajectory and defocused distance. As a results of a experiment, a sound weld bead shape and crack-free weld bead can be obtained. In conclusion this show that the welding stability is greatly affected by modulation of laser pulse shape for the same laser energy and welding parameters.

A Study on the Stress Concentration at Crack of Membrane Structures (막구조물의 파손단면에서의 응력집중 현상에 관한 연구)

  • Jeon, Jin-Hyung;Jeong, Eul-Seok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.89-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures arc unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure. In this study, we investigate into the stress concentration at crack of membrane structures. Therefore, using the nonlinear analysis program that NASS (Nonlinear Analysis for Spatial Structures) perform nonlinear analysis, and stress distribution for creak length investigate for using linear elastic fracture mechanics.

  • PDF

The Relationship Between Delamination Element and Delamination Growth (층간분리 요소와 층간분리 성장의 관계)

  • 송삼홍;김철웅;홍정화;김태수;황진우
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.113-116
    • /
    • 2003
  • The investigation of delamination growth behavior in hybrid composite material such as FRMLs should be considered delamination growth rate, dA_D/da$ using the delamination shape factor, $f_S$ instead of traditional fracture mechanics parameters. The main objective of this study is to evaluate the relationship between delamination element (i. e. delamination width, b, delamination contour, c, delamination shape factor, $f_S$ and delamination growth rate, dA_D/da$) and delamination growth in FRMLs under cyclic bending moment. The delamination shape formed along the fatigue crack between aluminum layer and glass fiber/epoxy layer are measured by scanning method. The details of study are as follow : ⅰ) Relationship between crack length, a and delamination width, b. ⅱ) Variation of delamination growth rate, dA_D/da$ was attendant on delamination shape factors, $f_{S1}$, $f_{S2}$, $f_{S3}$. The test result indicated the delamination growth behavior depends in delamination element such as delamination width, b, delamination shape factors, $f_{S1}$, $f_{S2}$, $f_{S3}$.

  • PDF

Prediction of Wrinkling in Micro R2R Forming and Its Improvement (마이크로 R2R 성형에서 주름의 발생 예측과 개선)

  • Min, B.W.;Seo, W.S.;Kim, J.B.;Lee, H.J.;Lee, S.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Recently, with the merits of simplicity, ease of mass production and cost effectiveness, a roll-to-roll (R2R) forming process is tried to be employed in the manufacturing of the circuit board, barrier ribs and other electronic device. In this study, the roll-to-roll process for the forming of micro-pattern in electronic device panel is designed and analyzed. In the preliminary experiments, two major defects, i.e., crack near the dimple wall and wrinkling on outside region of dimple, are found. The study on the crack prevention is carried out in previous works by authors. In this study, the cause of wrinkling and modification of tooling to prevent the wrinkling is studied. The main cause of wrinkling is considered to be the uneven material flow along the rolling direction. To reduce or to retard the wrinkling initiation, a dummy shape on outside the pattern is introduced. From the finite element analysis results, it is shown that the dummy shape can reduce the uneven material flow significantly. Finally the effect of dimensions of the dummy shape on material flow is investigated and the optimum dimensions are found.

Nondestructive Evaluation of 2-Dimensional Surface Crack in Ferromagnetic Metal and Paramagnetic Metal by ICFPD Technique (집중유도형 교류전위차법에 의한 강자성체 및 상자성체의 2차원 표면결함의 비파괴평가)

  • 김훈;장자철웅;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1202-1210
    • /
    • 1995
  • Aiming at nondestructive evaluation of defect with high accuracy and resolution, ICFPD(Induced Current Focusing Potential Drop) technique was newly developed. This technique can be applied for locating and sizing of defects in components with not only simple shape such as plain surface but also more complex shape and geometry such as curved surface and dissimilar joing. This paper describes the principle of ICFPD technique and also the results of 2-dimensional surface crack in ferromagnetic metal(A508 Cl. III steel) and paramagnetic metal (pure aluminum and stainless 304 steel) measured by this technique. Results are that surface defects in each specimen are detected with the difference of potential drop, and potential drops are distributed a similar shape for each metal and each depth. The normalized potential drop ( $V_{\delta}$2/$^{t}$ / $V_{{\delta} 2}$$^{-1}$) max. in the vicinity of defect is varied with the depth of defect. Therefore, ICFPD technique can be used for the evaluation of defect not only in ferromagnetic metal but also in paramagnetic steel..

Microfracture Mechanism and Fracture Properties of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys (Ni-Mn-Ga-Fe 강자성 형상기억합금의 미세파괴기구 및 파괴성질)

  • Euh, Kwangjun;Lee, Jung-Moo;Nam, Duk-Hyun;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.787-796
    • /
    • 2009
  • The fracture toughness improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile particles was explained by direct observation of microfracture processes using an in situ loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of ductile particles in the grains after the homogenization treatment at $800{\sim}1100^{\circ}C$. ${\gamma}$ particles were coarsened and distributed homogeneously along {$\beta}$ grain boundaries as well as inside {$\beta}$ grains as the homogenization temperature increased. The in situ microfracture observation results indicated that ${\gamma}$ particles effectively acted as blocking sites of crack propagation, and provided stable crack growth that could be confirmed by the R-curve analysis. This increase in fracture resistance with increasing crack length improved overall fracture properties of the alloys containing ${\gamma}$ particles.

The Delamination and Fatigue Crack Propagation Behavior in A15052/AFRP Laminates Under Cyclic Bending Moment (반복-굽힘 모멘트의 진폭에 따른 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전 거동)

  • Song, Sam-Hong;Kim, Cheol-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1277-1286
    • /
    • 2001
  • Aluminum 5052/Aramid Fiber Reinforced Plastic(Al5052/AFRP) laminates are applied to the fuselage-wing intersection. The Al5052/AFRP laminates suffer from the cyclic bending moment of variable amplitude during the service. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al5052/AFRP laminate was investigated in this study. Al5052/AFRP laminate composite consists of three thin sheets of Al5052 and two layers of unidirectional aramid fibers. The cyclic bending moment fatigue tests were performed with five different levels of bending moment. The shape and size of the delamination zone formed along the fatigue crack between Al5052 sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging mechanism and the delamination zone were studied. Fiber failures were not observed in the delamination zone in this study. It represents that the fiber bridging modification factor should turn out to increase and that the fatigue crack growth rate should decrease. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip.

The Effect of Fiber Stacking Angle on the Relationship Between Fatigue Crack and Delamination Behavior in a Hybrid Composite Materials (하이브리드 복합재료의 섬유배향각이 피로균열 및 층간분리 거동의 관계에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.281-288
    • /
    • 2004
  • The hybrid composite material (Al/GFRP laminates) are applied to the fuselage and wing in a aircraft. Therefore, Al/GFRP laminates suffer from the cyclic bending moments. This study was to evaluate the effect of fiber stacking angle on the fatigue crack propagation and delamination behavior using the relationship between crack growth rate (da/dN) and stress intensity factor range (ΔK) in Al/GFRP laminates under cyclic bending moment. The variable delamination growth behavior in case of three different type of fiber orientations, i.e., [Al/O$_2$/Al], [Al/+45$_2$/Al] and [Al/90$_2$/Al] at the interface of Al layer and glass fiber layer was measured by ultrasonic C-scan images. As results of this study, It represent that the delamination shape should turns out to have more effective characteristics on the fiber stacking angle. The extension of the delamination zone in case of [Al/+45$_2$/Al] and [Al/90$_2$/Al] were not formed along the fatigue crack profile. The shape of delamination zone depend on fiber stacking angle and the variable type with the delamination contour decreased non-linearly toward the crack tip at the Al layer.