Zhai, Guanghao;Narazaki, Yasutaka;Wang, Shuo;Shajihan, Shaik Althaf V.;Spencer, Billie F. Jr.
Smart Structures and Systems
/
제29권1호
/
pp.237-250
/
2022
Structural health monitoring (SHM) plays an important role in ensuring the safety and functionality of critical civil infrastructure. In recent years, numerous researchers have conducted studies to develop computer vision and machine learning techniques for SHM purposes, offering the potential to reduce the laborious nature and improve the effectiveness of field inspections. However, high-quality vision data from various types of damaged structures is relatively difficult to obtain, because of the rare occurrence of damaged structures. The lack of data is particularly acute for fatigue crack in steel bridge girder. As a result, the lack of data for training purposes is one of the main issues that hinders wider application of these powerful techniques for SHM. To address this problem, the use of synthetic data is proposed in this article to augment real-world datasets used for training neural networks that can identify fatigue cracks in steel structures. First, random textures representing the surface of steel structures with fatigue cracks are created and mapped onto a 3D graphics model. Subsequently, this model is used to generate synthetic images for various lighting conditions and camera angles. A fully convolutional network is then trained for two cases: (1) using only real-word data, and (2) using both synthetic and real-word data. By employing synthetic data augmentation in the training process, the crack identification performance of the neural network for the test dataset is seen to improve from 35% to 40% and 49% to 62% for intersection over union (IoU) and precision, respectively, demonstrating the efficacy of the proposed approach.
건물 외벽에 발생하는 균열은 시설물 구조 안전에 영향을 미치며 그 크기에 따라 위험도가 달라진다. 이에 따라 전문검사관의 현장 점검을 통해 발생 균열 두께를 정밀하게 측정할 필요가 있고 최근에는 이러한 현장 안전점검에 인공지능을 도입하려는 추세다. 그러나 기존의 균열 데이터셋은 주로 콘크리트에만 한정되어 다양한 외벽에 강인한 모델을 구축하기 어렵고 균열 두께를 측정하기 위해 정확한 마스크(Mask) 정보가 필요하나 이를 만족하는 데이터셋이 부재하다. 본 논문에서는 다양한 외벽에 강인한 균열 구획화 모델을 목적으로 2,744장의 이미지를 촬영하고 매직 완드 기법으로 라벨링을 진행해 데이터셋을 구축 후, 이를 바탕으로 딥러닝 기반 균열 구획화 모델을 개발했다. UNet-ResNet50을 최종모델로 선정 및 개발 결과, 테스트 데이터셋에 대해 81.22%의 class IoU 성능을 보였다. 본 연구의 기술을 바탕으로 균열 두께를 측정하여 건축물 안전점검에 활용될 수 있기를 기대한다.
인력기반 터널 점검은 점검자의 주관적인 판단에 영향을 받으며 지속적인 이력관리가 어렵다. 따라서 최근에는 딥러닝 기반 자동 균열 탐지 연구가 활발히 진행되고 있다. 하지만 대부분의 연구에서는 사용하는 대규모 공개 균열 데이터셋은 터널 내부에서 발생하는 균열과 매우 상이하다. 또한 현행 터널 상태평가에서 정교한 균열 레이블을 구축하기 위해서는 추가적인 작업이 요구된다. 이에 본 연구는 균열 형상이 다소 단순하게 표현된 기존 데이터셋을 딥러닝 모델에 입력하여 균열 탐지 성능을 개선하는 방안을 제시한다. 기존 터널 데이터셋, 고품질 터널 데이터셋과 공개 균열 데이터셋을 조합하여 학습한 딥러닝 모델의 성능 평가와 비교를 수행한다. 그 결과 Cross Entropy 손실함수를 사용한 DeepLabv3+에 공개 데이터셋, 패치 단위 분류와 오버샘플링을 수행한 터널 데이터셋을 모두 학습한 경우 성능이 가장 좋았다. 향후 기 구축된 터널 영상 취득 시스템 데이터를 딥러닝 모델 학습에 효율적으로 활용하기 위한 방안을 수립하는 데 기여할 것으로 기대한다.
인프라 구조물은 대부분 경제 성장기에 완공되었다. 이러한 인프라 구조물은 최근 들어 공용연수가 점차 증가하고 있어 노후 구조물의 비중이 점차 증가하고 있다. 이러한 노후 구조물은 설계 당시의 기능과 성능이 저하될 수 있고 안전사고로까지 이어질 수 있다. 이를 예방하기 위해서는 정확한 점검과 적절한 보수가 필수적이다. 이를 위해서는 우선 미세한 균열까지 정확히 탐지할 수 있도록 컴퓨터 비전과 딥러닝 기술에 수요가 증가하고 있다. 하지만 딥러닝 알고리즘은 다수의 학습 데이터가 있어야 한다. 특히 영상 내 균열의 위치를 표시한 라벨 영상은 필수적이다. 이러한 라벨 영상을 다수 확보하기 위해서는 많은 노동력과 시간이 필요한 실정이다. 이러한 비용을 절감하고 탐지 정확도를 높이기 위해서 본 연구에서는 mean teacher 방식의 학습 구조를 제안하였다. 이 학습 구조는 900장의 라벨 영상 데이터 세트와 3000장의 비라벨 영상 데이터 세트로 훈련되었다. 학습된 균열 탐지 신경망 모델은 300여장의 실험용 데이터 세트를 통해 평가되었고 탐지 정확도는 89.23%의 mean intersection over union과 89.12%의 F1 score를 기록하였다. 이 설험을 통해 지도학습과 비교하여 탐지 성능이 향상된 것을 확인하였다. 향후에 이러한 방법은 라벨 영상을 확보하는데 필요한 비용을 절감하는데 활용될 것으로 기대한다.
최근 안전점검자가 접근성 문제로 점검이 어려운 교량 부재의 상태평가를 위해 영상분석 기반의 시설물 점검 기법연구가 활발히 진행 중이다. 본 논문은 교량을 대상으로 딥러닝 기반 영상정보에 대해서 상태평가 연구를 진행하였고 이에 대한 평가 프로그램(프로토타입)을 개발하였다. 딥러닝 기반 교량 손상탐지 프로토타입을 개발하기 위해 딥러닝 모델 중 손상 검출 및 정량화가 가능한 의미론적 분할 모델인 Mask-RCNN를 적용하였고 학습데이터 6,540장(오픈 데이터 포함)과 손상유형에 적합한 레이블링을 구성하였다. 모델링에 대한 성능검증한 결과, 콘크리트 균열, 박리/박락, 철근노출과 도장 박리에 대한 정밀도(precision)는 95.2 %, 재현율(recall)은 93.8 % 나타내었다. 또한, 교량 콘크리트 부재 손상율을 이용하여 콘크리트 균열 실 데이터를 2차 성능검증 하였다.
현재 지하시설물의 균열을 영상 취득 시스템으로 취득한 경우 점검자가 취득된 영상에서 육안검사를 수행하여 미세균열을 판단한다. 점검자에 의존한 노동집약적인 방법은 점검자의 주관적인 판단에 영향을 받는 문제점을 가지고 있다. 최근에는 딥러닝을 활용하여 자동으로 콘크리트 균열을 탐지하기 위한 연구가 활발하게 수행되고 있다. 대부분의 연구에서는 공개 데이터셋을 활용하거나 분석과정의 객관성이 충분하지 못해 실제 업무에 적용하기 어려운 점이 있다. 본 연구는 실제 검사 시스템과 동일한 형태의 영상을 시험 데이터셋으로 선정하여 딥러닝 모델들을 평가하였다. 균열 탐지의 정확도를 향상시키기 위하여 딥러닝 모델들의 장단점을 상호 보완할 수 있는 앙상블 기법을 적용하였다. 시험 영상에서 폭 0.2 mm, 0.3 mm 및 0.5 mm의 균열들은 각각 80%, 88% 및 89%의 높은 재현율로 탐지되었다. 딥러닝을 적용한 균열 탐지 결과에서는 점검자의 육안 검수 과정에 찾지 못한 다수의 균열들을 포함하고 있었다. 향후 본 연구에서 사용하지 않은 다른 터널의 영상을 시험 영상으로 선정하여 보다 더 객관적인 평가에서 충분한 정확도로 균열을 탐지하게 된다면, 시설물 안점 점검 방식에 딥러닝의 도입이 가능할 것으로 판단된다.
본 논문에서는 고가의 디지털 설진 장비와 특별한 장치 없이 누구나 손쉽게 사용할 수 있는 디지털 설진 시스템의 첫 단계로 미각 영역별 균열 유무를 판별하는 시스템을 제안한다. 훈련 DB는 한방 병원에서 수집한 사진 261장을 바탕으로 Haar-like feature, Adaboost 학습을 하였다. 학습된 결과를 통하여 입력영상으로부터 혀 후보영역을 검출하고, 검출된 혀 후보영역으로부터 혀 영역만을 분리하기 위하여 261장의 훈련 DB의 HSV 컬러모델의 Hue 성분 평균 값을 산출하였다. 검출된 혀 윤곽으로부터 Connected Component Labeling을 통하여 혀 영역을 분리 하였다. 분리된 혀 영역의 상대적 너비와 높이를 이용하여 미각 영역별 로 분할하였다. 분할된 미각 영역별 영상은 Gray영상으로 변환하고, 각각의 영역별 평균 밝기를 산출하여 이진화하였다. 이진화 영상에 Connected Component Labeling을 통하여 균열 유무를 판별하였다.
프리캐스트 콘크리트는 일반적으로 건설 기간을 줄이고 시공 능력을 향상시키는 데 주로 사용되고 있다. 그러나 분할 과정에서 원래 구조 시스템과 다른 경계 조건과 구조적 거동을 적용하여 구조적 문제가 발생할 수도 있다. 이 연구에서는 시공 후 휨모멘트 및 크리프 증가로 인해 처짐과 균열이 발생한 프리캐스트 콘크리트 슬래브를 대상으로 검토하였으며, 이는 프리캐스트 콘크리트 슬래브의 지지 조건 및 구조거동에 대한 잘못된 적용에서 비롯된 것임을 알 수 있었다. 프리캐스트 콘크리트 슬래브 하부에 2 개의 지지대를 삽입하여 휨모멘트를 줄이고 보강 작업시 구조적 안전성을 확보하기 위해 잭킹력에 따른 캠버를 추정해야 한다. 따라서 기존 구조물의 처짐 및 균열을 확인하기 위해 역 해석을 통해 프리캐스트 콘크리트 슬래브의 다양한 지지 조건과 휨강성을 고려하였으며, 프리캐스트 콘크리트 슬래브의 잭킹력에 따라 캠버를 추정하고 안전한 구조물을 만드는 보강방법을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.