• 제목/요약/키워드: crack response

검색결과 286건 처리시간 0.021초

A Study on the Service Load State Behavior of Reinforced Concrete Plate Member

  • Bhang, Jee-Hwan;Kang, Won-Ho
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.55-72
    • /
    • 2000
  • This paper proposes a mechanical model to describe the load-deformation responses of the reinforced concrete plate members under service load state. An Analytical method is introduced on the basis of the rotating crack model which considers equilibrium, compatibility conditions, load-strain relationship of cracked member, and constitutive law for materials. The tension stiffening effect in reinforced concrete structures is taken into account by the average tensile stress-strain relationship from the load-strain relationship for the cracked member and the constitutive law for material. The strain compatibility is used to find out the crack direction because the crack direction is an unknown variable in the equilibrium and compatibility conditions. The proposed theory is verified by the numerous experimental data such as the crack direction, moment-steel strain relationship, moment-crack width relationship. The present paper can provide some basis for the provision of the definition of serviceability for plate structures of which reinforcements are deviated from the principal stresses, because the present code defines the serviceability by the deflection, crack control, vibration and fatigue basically for the skeletal members. The proposed theory is applicable to predict the service load state behavior of a variety of reinforced concrete plate structures such as skew slab bridges, the deck of skew girder bridges.

  • PDF

균열이 있는 기능경사 압전 세라믹의 충격 특성에 관한 연구 (Transient Response of Functionally Graded Piezoelectric Ceramic with Crack)

  • Jeong Woo Shin;Tae-Uk Kim;Sung Chan Kim
    • Composites Research
    • /
    • 제16권5호
    • /
    • pp.21-27
    • /
    • 2003
  • 선형 압전 이론(theory of linear piezoelectricity)을 이용하여 면외전단 충격(anti-plane shear impact)을 받는 기능경사 압전 세라믹(functionally graded piezoelectric ceramic)의 중앙에 존재하는 균열(central crack)의 동적 응답에 대해 연구한다. 기능경사 압전재료의 물성치(material property)는 두께방향을 따라 연속적으로 변한다고 가정한다. 라플라스 변환(Laplace transform)과 푸리에 변환(Fourier transform)을 사용하여 두 쌍의 복합적분 방정식을 구성하며, 이를 제2종 Fredholm 적분 방정식(Fredholm integral equations of the second kind)으로 표현한다. 재료 물성치의 변화도(gradient of material properties)와 전기하중(electric loading)의 영향을 보기 위해 동응력세기계수(dynamic stress intensity factor)에 대한 수치 결과를 제시하였다.

충격하중에 의해 크랙 주위에 형성되는 응력장에 관한 수치해석적 연구 (Numerical Analysis of Stress Field around Crack Tip under Impact Load)

  • 황갑운;조규종
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.450-460
    • /
    • 1996
  • To investigate the effect of stress wave propagation for crack tip, impact responses of two-dimensional plates with oblique cracks are investigated by a numerical method. In the numerical analysis, the finite element method is used in space domain discretization and the Newmark constant acceleration algorithm is used in time integration. According to the numerical results from the impact response analysis. it is found that the stress fields are bisected at the crack surface and the parts of stress intensity are moved along the crack face. The crack tip stress fields are yaried rapidly. The magnitude of crack tip stress fields are converted to dynamic stress intensity factor. Dynamic sress intensity factor appears when the stress wave has reached at the crack tip and the aspect of change of dynamic stress intensity factor is shown to be the same as the part of the flow of stress intensity.

크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(I) - 진폭특성을 중심으로 - (A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving Mass (I) - Focused on the Amplitude Characteristics -)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1295-1303
    • /
    • 2004
  • In this Paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the response characteristics. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The cracked section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the fluid velocity is constant, the influences of the crack severity, the position of the crack, the moving mass and its velocity, and the coupling of these factors on the tip-displacement of the cantilever pipe are depicted.

Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack under point impact loads

  • Feng, Wenjie;Liu, Jinxi
    • Structural Engineering and Mechanics
    • /
    • 제27권5호
    • /
    • pp.609-623
    • /
    • 2007
  • The problem of a semi-infinite magneto-electro-elastically impermeable mode-III crack in a magneto-electro-elastic material is considered under the action of impact loads. For the case when a pair of concentrated anti-plane shear impacts, electric displacement and magnetic induction impacts are exerted symmetrically on the upper and lower surfaces of the crack, the magneto-electro-elastic field ahead of the crack tip is determined in explicit form. The dynamic intensity factors and dynamic energy density factor are obtained. The method adopted is to reduce the mixed initial-boundary value problem, by using the Laplace and Fourier transforms, into three simultaneous dual integral equations, one of which is converted into an Abel's integral equation and the others into a singular integral equation with Cauchy kernel. Based on the obtained fundamental solutions of point impact loads, the solutions of two kinds of different loading cases are evaluated by integration. For some particular cases, the present results reduce to the previous results.

Identification of beam crack using the dynamic response of a moving spring-mass unit

  • An, Ning;Xia, He;Zhan, Jiawang
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.321-331
    • /
    • 2010
  • A new technique is proposed for bridge structural damage detection based on spatial wavelet analysis of the time history obtained from vehicle body moving over the bridge, which is different from traditional detection techniques based on the bridge response. A simply-supported Bernoulli-Euler beam subjected to a moving spring-mass unit is established, with the crack in the beam simulated by modeling the cracked section as a rotational spring connecting two undamaged beam segments, and the equations of motion for the system is derived. By using the transfer matrix method, the natural frequencies and mode shapes of the cracked beam are determined. The responses of the beam and the moving spring-mass unit are obtained by modal decomposition theory. The continuous wavelet transform is calculated on the displacement time histories of the sprung-mass. The case study result shows that the damage location can be accurately determined and the method is effective.

철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향 (Effects of Design on the Dynamic Response of Reinforced Concrete Slabs)

  • 오경윤;조진구;최수명;홍종현
    • 한국농공학회논문집
    • /
    • 제49권6호
    • /
    • pp.47-54
    • /
    • 2007
  • This paper is on the research of the special character of the dynamic response according to a design of the clamped reinforced concrete slab. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The design factor, which affect the dynamic response of the reinforced concrete slab, are the steel layer thickness, steel layer depth, steel layout method, steel layout angle and the slab thickness and span ratio. The main purpose of this study was to find out the dynamic response of the reinforced concrete slab according to above variables. The reduction of deflection/thickness ratio appeared less than 2% when the slab thickness between 20 and 21cm. It is desirable that the slab thickness must be above 20-21cm. The reduction ratio of deflection is appeared greatly when the value of the span/thickness ratio is between 25 and 30. In conclusion, the steel layer depth and thickness had a little effect on deflection of the dynamic response, but had no effect on the steel layout angle.

Acceleration data and shape change characteristics of a gravity quay wall according to inclination condition grades

  • Su-Kyeong Geum;Jong-Han Lee;Dohyoung Shin;Jiyoung Min
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.591-600
    • /
    • 2024
  • This study investigated the acceleration response and shape change characteristics of a gravity quay wall according to the magnitude of the applied acceleration. The quay wall was defined as a port facility damaged by the Kobe earthquake. Four experimental scenarios were established based on the inclination condition grades, considered to be a significant defect factor in the quay wall. Then, the shaking table test was conducted using scaled-down quay wall models constructed per each scenario. The ground acceleration was gradually increased from the peak ground acceleration (PGA) of 0.1 g to 0.7 g. After each ground acceleration test, acceleration installed on the wall and backfill ground and inclination on the top of the wall were measured to assess the amplification of peak response acceleration and maximum response amplitude and the change in the inclination of the quay wall. This study also analyzed the separation of the quay wall from the backfill and the crack pattern of the backfill ground according to PGA values and inclination condition grades. The result of this study shows that response acceleration could provide a reasonable prediction for the changes in the inclination of the quay wall and the crack generation and propagation on the backfill from a current inclination condition grade.

전자적 스캔에 의한 미소결함길이 평가기법 (A Small Crack Length Evaluation Technique by Electronic Scanning)

  • 조용상;김재훈
    • 비파괴검사학회지
    • /
    • 제29권1호
    • /
    • pp.15-20
    • /
    • 2009
  • 초음파에 의한 결함평가 방법은 결과가 검사자의 경험과 지식에 의존되고 검사자에 따라 평가결과가 달라진다. 위상배열 초음파는 탐촉자 소자에 초음파를 발생하는 시간지연을 부여함으로서 초음파 빔의 집속방향과 위치를 전자적으로 제어할 수 있는 특징이 있으며 탐촉자를 움직이지 않고 결함의 평가가 가능하다. 본 연구에서는 위상배열 초음파의 전자적 스캔 특성을 이용하여 미소결함에 대한 크기평가의 기법에 대한 고찰을 하였다. 일반적으로 탐촉자를 움직여서 결함길이를 평가하는 기존의 방법은 결함의 길이가 아주 미소할 경우는 탐촉자의 이동거리 역시 미소하여 크기를 평가하기가 곤란하다. 따라서 전자적 스캔의 특성을 이용하여 미소결함에 대해서도 결함길이를 정확하게 평가할 수 있는 방법 및 기법에 대하여 고찰하여 그 유효성을 입증하였다.

Dynamic response of a laminated hybrid composite cantilever beam with multiple cracks & moving mass

  • Saritprava Sahoo;Sarada Prasad Parida;Pankaj Charan Jena
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.529-540
    • /
    • 2023
  • A novel laminated-hybrid-composite-beam (LHCB) of glass-epoxy infused with flyash and graphene is constructed for this study. The conventional mixture-rule and constitutive-relationship are modified to incorporate filler and lamina orientation. Eringen's non-local-theory is used to include the filler effect. Hamilton's principle based on fifth-order-layer-wise-shear-deformation-theory is applied to formulate the equation of motion. The analogous shear-spring-models for LHCB with multiple-cracks are employed in finite-element-analysis (FEA). Modal-experimentations are conducted (B&K-analyser) and the findings are compared with theoretical and FEA results. In terms of dimensionless relative-natural-frequencies (RNF), the dynamic-response in cantilevered support is investigated for various relative-crack-severities (RCSs) and relative-crack-positions (RCPs). The increase of RCS increases local-flexibility in LHCB thus reductions in RNFs are observed. RCP is found to play an important role, cracks present near the end-support cause an abrupt drop in RNFs. Further, multiple cracks are observed to enhance the nonlinearity of LHCB strength. Introduction of the first to third crack in an intact LHCB results drop of RNFs by 8%, 10%, and 11.5% correspondingly. Also, it is demonstrated that the RNF varies because of the lamina-orientation, and filler addition. For 0° lamina-orientation the RNF is maximum. Similarly, it is studied that the addition of graphene reduces weight and increases the stiffness of LHCB in contrast to the addition of flyash. Additionally, the response of LHCB to moving mass is accessed by appropriately modifying the numerical programs, and it is noted that the successive introduction of the first to ninth crack results in an approximately 40% to 120% increase in the dynamic-amplitude-ratio.