• Title/Summary/Keyword: crack response

검색결과 286건 처리시간 0.104초

Transient response of a piezoelectric layer with a penny-shaped crack under electromechanical impacts

  • Feng, Wenjie;Li, Yansong;Ren, DeLiang
    • Structural Engineering and Mechanics
    • /
    • 제23권2호
    • /
    • pp.163-175
    • /
    • 2006
  • In this paper, the dynamic response of a piezoelectric layer with a penny-shaped crack is investigated. The piezoelectric layer is subjected to an axisymmetrical action of both mechanical and electrical impacts. Two kinds of crack surface conditions, i.e., electrically impermeable and electrically permeable, are adopted. Based upon integral transform technique, the crack boundary value problem is reduced to a system of Fredholm integral equations in the Laplace transform domain. By making use of numerical Laplace inversion the time-dependent dynamic stress and electric displacement intensity factors are obtained, and the dynamic energy release rate is further derived. Numerical results are plotted to show the effects of both the piezoelectric layer thickness and the electrical impact loadings on the dynamic fracture behaviors of the crack tips.

음향반응에 의한 계란의 크랙검출에 관한 연구 (Crack Detection in Eggshell by Acoustic Responses)

  • 조한근;최완규;백진하
    • Journal of Biosystems Engineering
    • /
    • 제23권1호
    • /
    • pp.67-74
    • /
    • 1998
  • A nondestructive quality inspection technique using acoustic impulse response method was developed for eggshell inspection. An experimental system was built to generate the impact force, to measure the response signal and to analyze the frequency spectrum. This system includes an impulse generating unit, an egg holding seal a microphone with preamplifier, and a DSP board installed on Personal Computer. A simple algorithm .was developed for crack detection. Using the developed system with algorithm, crack detection ability was evaluated and the error rate to estimate the normal egg as cracked was found to be 4% and the error rate to estimate the cracked egg as normal was also found to be 4%. This system could be adopted in industry with some modification.

  • PDF

반응표면모델을 통한 적층제조된 ZrH2 접종제 첨가AA7075 합금의 균열 밀도 예측 (Prediction of Crack Density in additive manufactured AA7075 Alloy Reinforced with ZrH2 inoculant via Response Surface Method)

  • 이정아;최중호;김형섭
    • 한국분말재료학회지
    • /
    • 제30권3호
    • /
    • pp.203-209
    • /
    • 2023
  • Aluminum alloy-based additive manufacturing (AM) has emerged as a popular manufacturing process for the fabrication of complex parts in the automotive and aerospace industries. The addition of an inoculant to aluminum alloy powder has been demonstrated to effectively reduce cracking by promoting the formation of equiaxed grains. However, the optimization of the AM process parameters remains challenging owing to their variability. In this study, the response surface methodology (RSM) was used to predict the crack density of AM-processed Al alloy samples. RSM was performed by setting the process parameters and equiaxed grain ratio, which influence crack propagation, as independent variables and designating crack density as a response variable. The RSM-based quadratic polynomial models for crack-density prediction were found to be highly accurate. The relationship among the process parameters, crack density, and equiaxed grain fraction was also investigated using RSM. The findings of this study highlight the efficacy of RSM as a reliable approach for optimizing the properties of AM-processed parts with limited experimental data. These results can contribute to the development of robust AM processing strategies for the fabrication of high-quality Al alloy components for various applications.

균열 회전체의 진동해석 (Vibration Analysis of Cracked Rotor)

  • 전오성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.925-934
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterative method. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.

  • PDF

Fatigue crack effect on magnetic flux leakage for A283 grade C steel

  • Ahmad, M.I.M.;Arifin, A.;Abdullah, S.;Jusoh, W.Z.W.;Singh, S.S.K.
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1549-1560
    • /
    • 2015
  • This paper presents the characterization of fatigue crack in the A283 Grade C steel using the MMM method by identifying the effects of magnetic flux leakage towards the crack growth rate, da/dN, and crack length. The previous and current research on the relation between MMM parameters and fatigue crack effect is still unclear and requires specific analysis to validate that. This method is considered to be a passive magnetic method among other Non-Destructive Testing (NDT) methods. The tension-tension fatigue test was conducted with a testing frequency of 10 Hz with 4 kN loaded, meanwhile the MMM response signals were captured using a MMM instrument. A correlation between the crack growth rate and magnetic flux leakage produces a sigmoid shape curve with a constant values which present the gradient, m value is in the ranges of 1.4357 to 4.0506, and the y-intercept, log C in the ranges of $4{\times}10^{-7}$ to 0.0303. Moreover, a linear relation was obtained between the crack length and magnetic flux leakage which present the R-Squared values is at 0.830 to 0.978. Therefore, MMM method has their own capability to investigate and characterize the fatigue crack effects as a main source of fracture mechanism for ferrous-based materials.

Breathing Crack이 있는 회전하는 복합재료 보의 동적 특성에 관한 연구 (Dynamic Characteristics of Rotating Composite Cantilever Beam with a Breathing Crack)

  • 김성수;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.527-533
    • /
    • 2000
  • It is investigated that the characteristics of rotating cantilevered composite beam with a breathing crack. In the present study, the crack is modeled as a breathing crack which opens and closes with the motion of the unidirectional graphite-fiber reinforced polyimide beam. For the finite element analysis, the cracked element is modelled by the local flexibility matrix calculated on the basis of fracture mechanics using Castiligano theorem. Rotating beam is considered only transverse bending motion so that the element includes two degrees of freedom per node such as the transverse deflection and slope. The time history and frequency response function of the beam with a breathing crack are studied by Newmark direct time integration method and FFT(Fast Fourier Transform)simulation. Effects of various parameters such as the crack depths, crack locations, ply angles, volume fraction ratios, and rotating speeds of the beam are also studied. Numerical results indicate that it is more reliable to be modelled as a breathing crack than an open crack.

  • PDF

Seismic response and failure modes for a water storage structure - A case study

  • Bhargava, Kapilesh;Ghosh, A.K.;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • 제20권1호
    • /
    • pp.1-20
    • /
    • 2005
  • The present paper deals with the seismic response analysis and the evaluation of most likely failure modes for a water storage structure. For the stress analysis, a 3-D mathematical model has been adopted to represent the structure appropriately. The structure has been analyzed for both static and seismic loads. Seismic analysis has been carried out considering the hydrodynamic effects of the contained water. Based on the stress analyses results, the most likely failure modes viz. tensile cracking and compressive crushing of concrete for the various structural elements; caused by the seismic event have been investigated. Further an attempt has also been made to quantify the initial leakage rate and average emptying time for the structure during seismic event after evaluating the various crack parameters viz. crack-width and crack-spacing at the locations of interest. The results are presented with reference to peak ground acceleration (PGA) of the seismic event. It has been observed that, an increase in PGA would result in significant increase in stresses and crack width in the various structural members. Significant increase in initial leakage rate and decrease in average emptying time for the structure has also been observed with the increase in PGA.

Transient Response of a Permeable Crack Normal to a Piezoelectric-elastic Interface: Anti-plane Problem

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1500-1511
    • /
    • 2004
  • In this paper, the anti-plane transient response of a central crack normal to the interface between a piezoelectric ceramics and two same elastic materials is considered. The assumed crack surfaces are permeable. By virtue of integral transform methods, the electro elastic mixed boundary problems are formulated as two set of dual integral equations, which, in turn, are reduced to a Fredholm integral equation of the second kind in the Laplace transform domain. Time domain solutions are obtained by inverting Laplace domain solutions using a numerical scheme. Numerical values on the quasi-static stress intensity factor and the dynamic energy release rate are presented to show the dependences upon the geometry, material combination, electromechanical coupling coefficient and electric field.

크랙을 가진 밸브 배관계의 강제진동 특성 (Characteristics of Forced Vibration of Valve-pipe Systems with a Crack)

  • 손인수;김창호;조정래
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1049-1056
    • /
    • 2012
  • The forced vibration response characteristics of a cracked pipe conveying fluid with a concentrated mass are investigated in this paper. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Hamilton's principle. The effects of concentrated mass and fluid velocity on the forced vibration characteristics of a cracked pipe conveying fluid are studied. The deflection response is the mid-span deflection of a cracked pipe conveying fluid. As fluid velocity and crack depth are increased, the resonance frequency of the system is decreased. This study will contribute to the decision of optimum fluid velocity and crack detection for the valve-pipe systems.

균열을 갖는 직사각형 진동평판의 음향 방사특성 (Sound Radiation Characteristics of Cracked Rectangular Vibrating Plates)

  • 김태진;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.119-124
    • /
    • 2002
  • This paper considers the sound radiation characteristics of a craked rectangular vibrating plate, varying the orientation angle of a line crack. The vibration response of the cracked vibrating plate is obtained by using ANSYS, the acoustic theory based on the lumped parameter model is used to calculate radiated sound power. The radiated sound powers are computed with varying the orientation angle of the crack: i.e, 0$^{\circ}$, 45$^{\circ}$, and 90$^{\circ}$. It is found that characteristics of the radiated sound power are very closely related to the crack orientation, vibration mode and crack location.

  • PDF