• 제목/요약/키워드: crack repairing

검색결과 68건 처리시간 0.022초

공동주택 하자소송의 균열하자보수비 비교.분석 연구 (Comparative Analysis on Repairing Cost of Lawsuit on Concrete Crack Defect in Apartment Building)

  • 김법수;박준모;최정현;서덕석;김옥규
    • 한국건설관리학회논문집
    • /
    • 제12권6호
    • /
    • pp.142-150
    • /
    • 2011
  • 공동주택의 가치와 품질, 관리에 대한 요구와 관심이 증가하면서, 2000년대 이래로 입주자에 의한 권리주장이 하자분쟁으로 나타나, 꾸준히 증가하여 왔다. 이에 본 연구에서는 하자소송판례를 통해 균열 쟁점의 비용적 특성을 알아보기 위하여, 하자보수비용 중 77%를 차지하고 있는 균열하자보수비에 대한 세부쟁점을 분석하였다. 또한, 각 세부 쟁점에 대한 하자보수 비용의 구성 및 하자보수방법에 따른 비용의 차이 등을 분석하였다. 그 결과, 허용균열폭의 인정여부에 따라 균열보수비용의 차이가 발생함을 확인할 수 있었고, 보수보강방법을 표면처리, 충전식, 주입식 공법 중 어느 것을 선택하느냐에 따라 비용 차이가 크게 발생함을 알게 되었다. 한편, 도장방법에 따른 하자보수비용의 차이도 상당한 것으로 나타났다.

표면탄성파를 활용한 콘크리트 균열 보수 성능 평가 기법 (Evaluation of Crack-Repairing Performance in Concrete Using Surface Waves)

  • 안은종;김현준;권성우;심성한;이광명;신명수
    • 한국건설순환자원학회논문집
    • /
    • 제5권4호
    • /
    • pp.496-502
    • /
    • 2017
  • 본 연구의 목적은 콘크리트 구조물에 존재하는 균열의 깊이 및 보수 성능 평가에 표면탄성파 기반 비파괴 성능 평가 기술의 적용 가능성 및 유효성을 검토하는데 있다. 이를 위해, 콘크리트 배합비의 영향을 최소화하기 위하여 동일한 배합비와 서로 다른 균열 깊이(0, 15, 30, 45mm)를 가지는 사각형 모양의 표면탄성파 투과 시험용 실험체를 준비하였다. 투과계수와 스펙트럼에너지투과비는 표면탄성파 파라미터로써 본 연구에 균열 깊이 변화 및 보수 성능 평가에 활용하였다. 이 때, 균열 보수 성능평가를 위하여 실험체 균열면에 에폭시 주입 전/후로 각 5회씩 반복하여 표면탄성파 실험의 신뢰성을 높여주었다. 균열 깊이 증가에 따라 스펙트럼에너지투과비의 감소를 명확하게 확인하였다. 균열면이 완전하게 보수된 콘크리트 실험체에서 측정한 스펙트럼에너지투과비는 무균열 실험체에서 측정한 값에 대비하여 95% 수준으로 계측되어, 표면탄성파 기반 비파괴 시험 기법이 균열 보수 성능 평가 기술로 활용할 수 있을 것으로 사료된다.

Prediction of Durability for RC Columns with Crack and Joint under Carbonation Based on Probabilistic Approach

  • Kwon, Seung-Jun;Na, Ung-Jin
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.11-18
    • /
    • 2011
  • Carbonation in RC (reinforced concrete) structure is considered as one of the most critical deteriorations in urban cities. Although RC column has one mix condition, carbonation depth is measured spatially differently due to its various environmental and internal conditions such as sound, cracked, and joint concrete. In this paper, field investigation was performed for 27 RC columns subjected to carbonation for eighteen years. Through this investigation, carbonation distribution in sound, cracked, and joint concrete were derived with crack mappings. Considering each related area and calculated PDF (probability of durability failure) of sound, cracked, and joint concrete through Monte Carlo Simulation (MCS), repairing timings for RC columns are derived based on several IPDF (intended probability of durability failure) of 1, 3, and 5%. The technique of equivalent probability including carbonation behaviors which are obtained from different conditions can provide the reasonable repairing strategy and the priority order for repairing in a given traffic service area.

열화재 용접부의 강도평가에 관한 연구 (A Study on the Strength Evaluation of Welded Joints for Degraded Material)

  • 정의정;윤한용;임명환;김태식
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.75-82
    • /
    • 2002
  • Welding is used not only for the shipbuilding, but also for the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, the result from identical materials showed that the rate of fatigue crack growth of the heat-affected zone was slower than that of parent metal.

콘크리트 구조물 균열에 에폭시 주입의 표준화를 위한 기초적 연구 (A Basic Study on the Standardization of Epoxy Injection on Concrete Structure Crack)

  • 백종명;장석재
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.115-122
    • /
    • 2006
  • 현재 콘크리트 구조물의 보수에서 품질의 검사 기준이 없는 상태에서, 단순한 경험에 의한 보수는 문제점을 가지고 있다. 이 문제점을 개선하기 위하여 이 논문은 균열폭과 주입량, 균열폭과 주입시간, 균열폭과 주입압력, 균열폭과 주입압력과 주입시간, 구조물 규모와 주입량, 구조물 별 균열 위치와 주입량, 균열폭 및 구조물 두께와 주입시간과의 관계를 분석하였다. 분석한 결과에서 얻은 자료는 콘크리트 구조물의 보수에 대한 체계적인 품질관리에 도움이 될 것이라 생각한다.

열화재 용접부의 강도평가에 관한 연구 (A Study on The Strength Evaluation of welded Joints for Degraded Material)

  • 정의정;윤한용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.705-710
    • /
    • 2002
  • Welding is used not only during the shipbuilding, but also during the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, The result within identical materials showed that the heat-affected zone was slower than that of parent metal

  • PDF

A new formulation of the J integral of bonded composite repair in aircraft structures

  • Serier, Nassim;Mechab, Belaid;Mhamdia, Rachid;Serier, Boualem
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.745-755
    • /
    • 2016
  • A three-dimensional finite element method is used for analysis of repairing cracks in plates with bonded composite patch in elastic and elastic plastic analysis. This study was performed in order to establish an analytical model of the J-integral for repair crack. This formulation of the J-integral to establish models of fatigue crack growth in repairing aircraft structures. The model was developed by interpolation of numerical results. The obtained results were compared with those calculated with the finite element method. It was found that our model gives a good agreement of the J-integral. The arrow shape reduces the J integral at the crack tip, which improves the repair efficiency.

Concrete crack rehabilitation using biological enzyme

  • Chen, How-Ji;Tai, Pang-Hsu;Peng, Ching-Fang;Yang, Ming-Der
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.413-417
    • /
    • 2017
  • Concrete is a material popularly used in construction. Due to the load-bearing and external environmental factors during utilization or manufacturing, its surface is prone to flaws, such as crack and leak. To repair these superficial defects and ultimately and avoid the deterioration of the concrete's durability, numerous concrete surface protective coatings and crack repair products have been developed. Currently, studies are endeavoring to exploit the mineralization property of microbial strains for repairing concrete cracks be the repairing material for crack rehabilitation. This research aims to use bacteria, specifically B. pasteurii, in crack rehabilitation to enhance the flexural and compression strength of the repaired concrete. Serial tests at various bacterial concentrations and the same $Urea-CaCl_2$ medium concentration of 70% for crack rehabilitation were executed. The results prove that the higher the concentration of the bacterial broth, the greater the amount of calcium carbonate precipitate was induced, while using B. pasteurii broth was for crack rehabilitation. The flexural and compression strengths of the repaired concrete test samples were the greatest at 100% bacterial concentration. Compared to the control group (bacterial concentration of 0%), the flexural strength had increased by 32.58% for 1-mm crack samples and 51.01% for 2-mm crack samples, and the compression strength had increased by 28.58% and 23.85%, respectively. From the SEM and XRD test results, a greater quantity of rectangular and polygonal crystals was also found in samples with high bacterial concentrations. These tests all confirm that using bacteria in crack rehabilitation can increase the flexural and compression strength of the repaired concrete.

콘크리트구조물의 탄소섬유시트에 의한 구조 보강시 광섬유 센서를 이용한 모니터링기법에 관한 연구 (Study on the Monitoring Method of Concrete Structure Repaired by Carbon Sheets with Optical Fiber Sensors)

  • 김기수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.149-152
    • /
    • 2005
  • In order to extend the life time of building and civil infra-structure, nowadays, patch type carbon sheets are widely used as repairing meterials. Repaired concrete columns and beams with carbon sheets gain their stiffness and strength, but they lose toughness and show brittle failure behaviors. Usually, the cracks of concrete structures are visible with naked eyes and the status of the structure in the life cycle is estimated with visible inspection. After repairing of the structure, crack visibility is blocked by repaired carbon sheets. Therefore, structural monitoring after repairing is indispensible and self diagnosis method with optical fiber sensor is very useful. In this paper, peel-out effects is detected with optical fiber sensors and the strain difference between main structure and repaired carbon sheets when they separate each other.

  • PDF

Fatigue analysis of partly damaged RC slabs repaired with overlaid UHPFRC

  • Deng, Pengru;Kakuma, Ko;Mitamura, Hiroshi;Matsumoto, Takashi
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.19-32
    • /
    • 2020
  • Due to repetitive traffic loadings and environmental attacks, reinforced concrete (RC) bridge deck slabs are suffering from severe degradation, which makes structural repairing an urgency. In this study, the fatigue performance of an RC bridge deck repairing technique using ultra-high performance fiber reinforcement concrete (UHPFRC) overlay is assessed experimentally with a wheel-type loading set-up as well as analytically based on finite element method (FEM) using a crack bridging degradation concept. In both approaches, an original RC slab is firstly preloaded to achieve a partly damaged RC slab which is then repaired with UHPFRC overlay and reloaded. The results indicate that the developed analytical method can predict the experimental fatigue behaviors including displacement evolutions and crack patterns reasonably well. In addition, as the shear stress in the concrete/UHPFRC interface stays relatively low over the calculations, this interface can be simply simulated as perfect. Moreover, superior to the experiments, the numerical method provides fatigue behaviors of not only the repaired but also the unrepaired RC slabs. Due to the high strengths and cracking resistance of UHPFRC, the repaired slab exhibited a decelerated deterioration rate and an extended fatigue life compared with the unrepaired slab. Therefore, the proposed repairing scheme can afford significant strengthen effects and act as a reference for future practices and engineering applications.