• Title/Summary/Keyword: crack prediction

Search Result 554, Processing Time 0.026 seconds

A Quantitative Evaluation of ${\Delta}K_{eff}$ Estimation Methods Based on Random Loading Crack Growth Data. (랜덤하중하의 피로균열진전 데이터를 이용한 ${\Delta}K_{eff}$ 평가법의 정량적 평가)

  • Koo, Ja-Suk;Song, Ji-Ho;Kang, Jae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.208-213
    • /
    • 2004
  • Methods for estimation of the effective stress intensity factor range (${\Delta}K_{eff}$) are evaluated for narrow and wide band random loading crack growth test data of 2024-T351 aluminum alloy. Three methods of determining $K_{op}$, visual measurement, ASTM offset compliance method, and the neural network method proposed by Kang and Song, and three methods of estimating ${\Delta}K_{eff}$, conventional, the 2/PI0 and 2/PI methods proposed by Donald and Paris, are compared in a quantitative manner by using the results of fatigue crack growth life prediction under random loading. For all $K_{op}$ determination methods discussed, the 2/PI0 and 2/PI methods of estimating ${\Delta}K_{eff}$ provide better results than conventional method for narrow and wide band random loading data.

  • PDF

A Study on J-Resistance Curve of Low-Carbon Steel Using Center Cracked Tension Specimen (CCT 시험편을 이용한 저탄소강의 J 저항곡선에 관한 연구)

  • 고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.40-45
    • /
    • 1986
  • In this paper, the I-resistance curve of low-carbon steel with 3 mm thickness was investigated for various crack ratios. The experiments were carried out for the center cracked tension (CCT) specimen with about 50 mm width on an instron machine. The plane stress fracture toughness obtained by the Simpson's formula was Ii. = 24.96 kgffmm. Simpson's formula which considers crack growth in obtaining J integral showed more conservative lin than Rice's and Sumpter's. For materials that may be approximated by the Ramberg and Osgood stress strain law, the relevant crack parameters like the J integral, load line displacement are approximately normalized. Crack driving forces in terms of the I integral are computed for low-carbon steel CCT specimen using the above estimation scheme. Comparison of the prediction with actual experimental measurements by Simpson's formula showed good agreement for several different sized specimen.

  • PDF

Crack Analysis of Piezoelectric Material Considering Bounded Uncertain Material Properties

  • Kim, Tae-Uk;Shin, Jeong-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • Piezoelectric materials are widely used to construct smart or adaptive structures. Although extensive efforts have been devoted to the analysis of piezoelectric materials in recent years, most researches have been conducted by assuming that the material properties are fixed and have no uncertainties. Intrinsically, material properties have a certain amount of scatter and such uncertainties can affect the performance of component. In this paper, the convex modeling is used to consider such uncertainties in calculating the crack extension force of piezoelectric material and the results are compared with the one obtained via the Monte Carlo simulation. Numerical results show that crack extension forces increase when uncertainties considered, which indicates that such uncertainties should not be ignored for reliable lifetime prediction. Also, the results obtained by the convex modeling and the Monte Carlo simulation show good agreement, which demonstrates the effectiveness of the convex modeling.

Prediction of Crack Initiation and Design of 40kHz Blade Horn for Ultrasonic Cutting (40kHz 초음파 커팅용 혼의 설계와 크랙발생에 대한 고찰)

  • Seo, Jeong-Seok;Lee, Yoon-Jung;Beak, Si-Young;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.784-789
    • /
    • 2012
  • Ultrasonic Cutting which uses a tuned blade resonant in a longitudinal mode, has been used to cut a range of materials from confectionery, baked products and frozen foods, to wood, bone, foams and composites. The Blade design typically uses finite element analysis, and it could be predicted vibration mode, gain and amplitude uniformity of the blade tip at resonant frequency. In this paper, FEA used to predict the vibration characteristic of the blade, and then the results were verified by analysis system of resonant frequency using the processed blade. The crack of the blade which is predicted from FEA was compared with the crack occurred by cutting experiment of rubber materials using the processed blade.

A Fracture Mechanics Analysis on Fatigue Life Estimation of DEN Plate (DEN판재의 피로수명 평가에 관한 파괴역학적 연구)

  • Lim Chang-Hyeon
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.163-169
    • /
    • 2000
  • This paper mainly deals with fatigue lift estimation and prediction in notched structures. The fatigue crack initiation life and the fatigue crack growth behavior in the DEN specimens were predicted using S.I.F. K solution derived in this study and the Paris' crack growth equation. Predicted results showed good agreement with experimental crack growth behaviors under constant-load-amplitude.

  • PDF

Stress Intensity factor Analysis for Three-Dimensional Cracks in Inhomogeneous Materials (비균질재료의 3차원 균열에 대한 응력확대계수 해석)

  • 김준수;이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.197-203
    • /
    • 2003
  • Accurate stress intensity factor analyses and crack growth rate of surface -cracked components in inhomogeneous materials are needed fur reliable prediction of their fatigue life and fracture strengths. This paper describes an automated stress intensity factor analysis of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor fur subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

Evaluation of Creep Crack Growth Failure Probability for High Temperature Pressurized Components Using Monte Carlo Simulation (몬테카를로법을 이용한 고온 내압 요소의 크리프 균열성장 파손확률 평가)

  • Lee, Jin-Sang;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.28-34
    • /
    • 2006
  • A procedure of estimating failure probability is demonstrated for a pressurized pipe of CrMo steel used at $538^{\circ}C$. Probabilistic fracture mechanics were employed considering variations of pressure loading, material properties and geometry. Probability density functions of major material variables were determined by statistical analyses of implemented data obtained by previous experiments. Distributions of the major variables were reflected in Monte Carlo simulation and failure probability as a function of operating time was determined. The creep crack growth life assessed by conventional deterministic approach was shown to be conservative compared with those obtained by probabilistic one. Sensitivity analysis for each input variable was also conducted to understand the most influencing variables to the residual life analysis. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

A Study on the Prediction Fatigue Life of Two-Span Beams with Steel Fibrous (강섬유를 혼입한 2경간 연속보의 피로수명 예측에 관한 연구)

  • 곽계환;김원태;이진성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.375-382
    • /
    • 2001
  • This study is attempted to predict experimentally the fatigue crack propagation behavior of two-span beams with steel fibrous for various steel fibrous contents. The static tests and the fatigue tests were performed on a series of SFRC(steel fibrous reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fibrous contents. Through this test, the diagonal cracking loads, ultimate loads, deflections, strains of concrete and steels. Fatigue crack length were measured by the eye-observation. As a result of test, A model for S-N relationship, and propagation life of fatigue crack of SFRC was proposed. The crack growth and failure of SFRC beams were studied.

  • PDF

Numerical Analysis of Residual Stress Redistribution due to Fatigue Crack Propagation of Weld Zone (용접부의 균열진전에 따른 잔류응력 재분포 해석)

  • 이동형;구병춘
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.225-231
    • /
    • 2002
  • The problem of welding stresses and fatigue behavior is the main concerns of welding research fields. The residual stresses and distortion of structures by welding is exert negative effect on the safety of mechanical structures. That is, expansion of material by high temperature and distortion by cooling during welding process is caused of tensile and compressive residual stresses on welding material, and this residual stresses reduce fracture and fatigue strength of welding structures. The accurate prediction of residual stress and redistribution due to fatigue crack propagation of weld zone is very important to improve the quality of weldment. In this study, a finite element modeling technique is developed to simulate the redistribution of residual stresses due to fatigue crack propagation of weld zone.

  • PDF

Plastic energy approach prediction of fatigue crack growth

  • Maachou, Sofiane;Boulenouar, Abdelkader;Benguediab, Mohamed;Mazari, Mohamed;Ranganathan, Narayanaswami
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.885-899
    • /
    • 2016
  • The energy-based approach to predict the fatigue crack growth behavior under constant and variable amplitude loading (VAL) of the aluminum alloy 2024 T351 has been investigated and detailed analyses discussed. Firstly, the plastic strain energy was determined per cycle for different block load tests. The relationship between the crack advance and hysteretic energy dissipated per block can be represented by a power law. Then, an analytical model to estimate the lifetime for each spectrum is proposed. The results obtained are compared with the experimentally measured results and the models proposed by Klingbeil's model and Tracey's model. The evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading.