• Title/Summary/Keyword: crack of concrete

Search Result 2,410, Processing Time 0.028 seconds

Theoretical Stiffness of Cracked Reinforced Concrete Elements (철근콘크리트 부재의 균열 후 강성 이론)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.79-88
    • /
    • 1999
  • The purpose of this paper is to develop a mathematical expression for computing crack angles based on reinforcement volumes in the longitudinal and transverse directions, member end-fixity and length-to-width aspect ratio. For this a reinforced concrete beam-column element is assumed to possess a series of potential crack planes represented by a number of differential truss elements. Depending on the boundary condition, a constant angle truss or a variable angle truss is employed to model the cracked structural concrete member. The truss models are then analyzed using the virtual work method of analysis to relate forces and deformations. Rigorous and simplified solution schemes are presented. An equation to estimate the theoretical crack angle is derived by considering the energy minimization on the virtual work done over both the shear and flexural components the energy minimization on the virtual work done over both the shear and flexural components of truss models. The crack angle in this study is defined as the steepest one among fan-shaped angles measured from the longitudinal axis of the member to the diagonal crack. The theoretical crack angle predictions are validated against experimentally observed crack angle reported by previous researchers in the literature. Good agreement between theory and experiment is obtained.

Development of Construction Methods for the Crack Control of underground RC Box Structures (지하 철근콘크리트 박스구조물의 균열제어 시공기술개발)

  • 이순환;김영진;김성운;방재원;최용성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.809-812
    • /
    • 1999
  • This research analyzed the factors for crack generation and proposed the recommended construction methods for the efficient crack control of underground RC box structures under the roadway. The selected main factors were: details of contraction joints, ratio of crack control rebars in longitudinla direction, and placement of flyash concrete. These factors were tested on the actual structures and the significance of each factor was analyzed, The results show that the flyash concrete placement and the inducting minor cracks in a certain direction by adopting contraction joints are practical and efficient methods to control cracks. The significance of crack generating factors increases as the sectional loss of contraction joint spacing increase. It was recommeded that the sectional loss should be higher than 20 percent to maximize the crack generating effects. It was not possible to verify the effect of crack control rebar spacing, but it was estimated that the ratio of crack control rebar should be increased to minimize cracks.

  • PDF

A Rational Approach to the Flexural Concrete Beam Analysis with Crack Growth using Fracture Mechanic Concepts (크랙을 고려한 휨을 받는 콘크리트보의 해석)

  • Heo, Gwang Hee;Choi, Man Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.159-171
    • /
    • 1998
  • This study attempts to develop a rational approach to flexural concrete beam analysis with crack growth. In order to develope analytical solutions, several simplification and assumption are made and the Hillerborg fictitious crack model is adapted for new rational approach to the flexural concrete beam. To provide desired results, the concrete beams with various conditions(more than 126 beam conditions) are analyzed. Before producing the results, these assumptions are founded to be justified by comparison with a FE analysis. The results for each condition of the beams are presented in terms of crack lengths, the strength and cracking stability of concrete beams. And also size effects in a flexural concrete beam is studied using a new flexural cracking model.

  • PDF

2D evaluation of crack openings using smeared and embedded crack models

  • Gamino, Andre Luis;Manzoli, Osvaldo Luis;de Oliveira e Sousa, Jose Luiz Antunes;Bittencourt, Tulio Nogueira
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.483-496
    • /
    • 2010
  • This work deals with the determination of crack openings in 2D reinforced concrete structures using the Finite Element Method with a smeared rotating crack model or an embedded crack model. In the smeared crack model, the strong discontinuity associated with the crack is spread throughout the finite element. As is well known, the continuity of the displacement field assumed for these models is incompatible with the actual discontinuity. However, this type of model has been used extensively due to the relative computational simplicity it provides by treating cracks in a continuum framework, as well as the reportedly good predictions of reinforced concrete members' structural behavior. On the other hand, by enriching the displacement field within each finite element crossed by the crack path, the embedded crack model is able to describe the effects of actual discontinuities (cracks). This paper presents a comparative study of the abilities of these 2D models in predicting the mechanical behavior of reinforced concrete structures. Structural responses are compared with experimental results from the literature, including crack patterns, crack openings and rebar stresses predicted by both models.

Shear Strength of Concrete Members without Transverse Steel (횡보강근이 없는 콘크리트 부재의 전단강도)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

A Study on Chloride ion Diffusion in Cracked Concrete (균열이 발생한 콘크리트에서의 염화물 이온 확산에 관한 연구)

  • 배상운;박상순;변근주;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.677-682
    • /
    • 2001
  • In this study, a method to evaluate diffusion coefficient of chloride ion in cracked concrete is proposed. For cracked concrete having either anisotropic or isotropic crack network, each crack of saturated concrete is considered as a V shape crack, and an effective diffusion coefficient is expressed with diffusion coefficients of cracked part and noncracked part and a so-called crack spacing factor. A comparison with experimental results shows that the diffusion coefficient for cracked concrete is accurately predicted by the effective diffusion coefficient. Prediction results also show that the cracks in concrete markedly change the diffusion properties and accelerate penetration of drifting species. The method in this paper can be effectively used to consider the effect of cracks on concrete diffusion coefficient of cracked concrete.

  • PDF

Mock-up Test on the Reduction of Hydration Heat of Mass Concrete for Transfer Girder (전이보 매스콘크리트의 수화열 저감에 관한 Mock-up 실험)

  • Yoon Seob;Hwang Yin Seong;Baik Byung Hoon;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.707-710
    • /
    • 2004
  • This paper reported the results of mock-up test on mass concrete for transfer girder using setting time difference of super retarding agent(SRA). According to test results, two mock-up structures were made. Plain concrete without placing layer reached maximum temperature after 24hours since placement and caused surface hydration cracks at top section. However, concrete with placing layer reached maximum temperature after 72hours and surface temperature was higher than center temperature, which did not cause surface crack. After form removing, no crack was observed at side surface of plain concrete, while concrete using SRA at mid section had surface scaling and settling crack. According to coring results, concrete with placing layer had a penetration crack from top section to bottom section. Therefore, the setting time difference method to reduce hydration heat will have difficulty in applying the mass concrete for transfer girder.

  • PDF

Maximum Crack Width Control in Concrete Bridges Affected By Corrosion (부식을 고려한 콘크리트 교량의 최대 균열폭 제어)

  • Cho, Tae-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.114-121
    • /
    • 2006
  • As one of the serviceability limit states, the prediction and control of crack width in reinforced concrete bridges or PSC bridges are very important for the design of durable structures. However, the current bridge design specifications do not provide quantitative information for the prediction and control of crack width affected by the initiation and propagation of corrosion. Considering life span of concrete bridges, an improved control equation about the crack width affected by time-dependent general corrosion is proposed. The developed corrosion and crack width control models can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also help the rational criteria for the quantitative management and the prediction of remaining life of concrete structures.

Numerical Fracture analysis of prestressed concrete beams

  • Rabczuk, Timon;Zi, Goangseup
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.153-160
    • /
    • 2008
  • Fracture of prestressed concrete beams is studied with a novel and robust three-dimensional meshfree method. The meshfree method describes the crack as a set of cohesive crack segments and avoids the representation of the crack surface. It is ideally suited for a large number of cracks. The crack is modeled by splitting particles into two particles on opposite sides of the crack segment and the shape functions of neighboring particles are modified in a way the discontinuous displacement field is captured appropriately. A simple, robust and efficient way to determine, on which side adjacent particles of the corresponding crack segment lies, is proposed. We will show that the method does not show any "mesh" orientation bias and captures complicated failure patterns of experimental data well.

Analytical study of the influence of crack width and depth on the penetration of chloride ion and the carbonation (균열 폭 및 깊이가 염소이온 침투 및 탄산화에 미치는 영향에 대한 해석적 연구)

  • Kim, Chin-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.594-597
    • /
    • 2006
  • Chloride ion penetration and carbonation are the most important factors in the durability problems of reinforced concrete structures. Most of the existing studies on those subjects are focused on the no-crack concrete, though the existence of crack may strongly affect the chloride ion penetration and carbonation. To evaluate the influence of crack on the chloride ion penetration and carbonation and to assess the service life of reinforced concrete more accurately, finite volume analyses (FVA) were performed based on the FV mesh containing the ideal crack whose width is uniform along the depth. Analytical results show that the influence of crack width and depth is much more pronounced for the chloride ion penetration than for the carbonation.

  • PDF