• Title/Summary/Keyword: crack location

Search Result 378, Processing Time 0.025 seconds

A study on the Teflon crack Molding Method (테프론 균열 주형법 開發에 관한 硏究)

  • 최상인;최선호;황재석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.945-952
    • /
    • 1987
  • In this paper, Crack molding method called "Teflon crack Molding Method" is developed. With help of this method, we can mold a crack which is very similar to the natural crack, which has the tip radius of about 20.mu. the vertical and horizontal quality of crack excellent. In addition to these, by using this method in photoelastic experiment we can obtain the clear crack tip location and Isochromatic fringe pattern boundary, therefore the precise in the experimental data can be improved. improved.

A technique for capturing structural crack geometry in numerical simulation based on the invariant level set method

  • Tao Wang;Shangtao Hu;Menggang Yang;Shujun Fang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.243-254
    • /
    • 2023
  • Engineering structures usually suffer from cracks. The crack geometry has an influence on the structural mechanical properties and subsequent crack propagations. However, as an extensively utilized method in fracture analysis, the extended finite element method provided by Abaqus fails to output the specific location and dimensions of fractures. In this study, a technique to capture the crack geometry is proposed. The technique is based on the invariant level set method (I-LSM), which can avoid updating the level set function during crack development. The solution is achieved by an open-source plug-in programmed by Python. Three examples were performed to verify the effectiveness and robustness of the program. The result shows that the developed program can accurately output the crack geometry in both the 2D and 3D models. The open-source plug-in codes are included as supplementary material.

The Numerical Analysis for the Surface Crack Behavior in the Planar Solid Oxide Fuel Cell (평판형 고체산화물 연료전지 표면균열거동에 관한 수치해석)

  • Park, Cheol Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2018
  • A fuel cell is an energy conversion device that converts a chemical energy directly into an electrical energy and has higher energy efficiency than an internal combustion engine, but solid oxide fuel cell (SOFC) consisting of brittle ceramic material remains as a major issue regarding the mechanical properties as the crack formation and propagation. In this study, the stress distribution and crack behavior around the crack tip were evaluated, due to investigated the effects of the surface crack at the operating condition of high temperature. As a result, the difference of the generated stress was insignificant at operating conditions of high temperature according to the surface crack length changes. This is because, the high stiffness interconnect has a closed structure to suppress cell deformation about thermal expansion. The stress intensity factor ratio $K_{II}/K_I$ increased as the crack depth increased, at that time the effect of $K_{II}$ is larger than that of $K_I$. Also the maximum stress intensity factor increased as the crack depth increased, but the location of crack was generated at the electrolyte/anode interface, not at the crack tip.

Effect of Nozzle on LBB Evaluation for Small Diameter Nuclear Piping (직경이 작은 원자력배관의 파단전누설 해석에 미치는 노즐의 영향)

  • Yu, Yeong-Jun;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1872-1881
    • /
    • 1996
  • LBB(Leak-Before-Break) analysis is performed for the highest stress location of each different type of mateerials in the nuclear piping line. In most cases, the highest stress occurs in the pipe and nozzle interface location. i.e. terminal end. The current finite element analysis approach utilizes the symmetry condition both for locations near the nozzle and for locationa away from the nozzle to minimize the size of the finite element model and to make analysis simple when calculating the J-integral values at the crack tip. In other words, the nozzle is not included in the finite element model. However, in reality, the symmetric condition is not applicable for the pipe-nozzle interface location. Because the pipe-nozzle interface location is asymmetric due to different stiffenss of the pipe and nozzle(both material and dimensions). The simplified analysis approach for pipe-nozzle interface locaiton is too conservative for a smaller diameter piping. In tlhis paper, various analyses are performed for the range of materials and crack sizes to evaluate the nozzle effect for a LBB anlaysis. This paper presents methodology for developing the piping evaluaiton diagram at the pipe-nozzle interface location.

Fatigue Crack Growth Behavior of and Recognition of AE Signals from Composite Patch-Repaired Aluminum Panel (복합재 패치로 보수된 알루미늄 패널의 피로균열 성장거동과 AE신호의 유형인식)

  • Kim, Sung-Jin;Kwon, Oh-Yang;Jang, Yong-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.48-57
    • /
    • 2007
  • The fatigue crack growth behavior of a cracked and patch-repaired Ah2024-T3 panel has been monitored by acoustic emission(AE). The overall crack growth rate was reduced The crack propagation into the adjacent hole was also retarded by introducing the patch repair. AE signals due to crack growth after the patch repair and those due to debonding of the plate-patch interface were discriminated by usiag the principal component analysis. The former showed high center frequency and low amplitude, whereas the latter showed long rise tine, low frequency and high amplitude. This type of AE signal recognition method could be effective for the prediction of fatigue crack growth behavior in the patch-repaired structures with the aid of AE source location.

The Effect of Residual Stress on Stress Intensity Factor and Fatigue Crack Growth Rate (잔류응력이 응력세기계수와 피로균열성장율에 미치는 영향)

  • Kang-Yong,Lee;Hong-Key,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.43-47
    • /
    • 1984
  • The purpose of this paper is to investigate theoretically the effect of residual stress due to welding in stress intensity factor of a plate containing the Model I Crack in different crack size and location, and on fatigue crack growth rate. The initiation of crack is found to be possible only in the region of tensile residual stress. The most dangerous crack has the values of d/b and a/b equal to about 0.6 and 1.0, respectively, where d/b is the ratio of distance from the crack to welding bead and the width of tensile residual stress region and a/b is the ratio of crack length and tensile residual stress region. The crack perpendicular to and on the line of welding bead and with a/b equal to about 0.6 has maximum stress intensity factor. The theoretical fatigue crack growth rate under residual stress and applied stress, which is obtained from Forman's Law by stress superposition, is relatively in good agreement with Glinka's[8] experimental value. The fatigue crack growth is shown to be retarded due to residual stress distribution.

  • PDF

Thermal stress Intensity Factors for the Interfacial Crack on a Cusp-Type Inclusion (커스프형 강체함유물 상의 접합경계면 균열에 대한 열응력세기계수)

  • 이강용;장용훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1255-1265
    • /
    • 1992
  • Under uniform heat flow, the thermal stress intensity factors for the interfacial crack on a rigid cusp-type inclusion are determined by Hilbert problem expressed with complex variable. The thermal stress intensity factors are expressed in terms of the periodic function of heat flow angle. When the tip of the interfacial crack meets that of the cusp crack, the thermal stress intensity factors have singularities. The thermal stress intensity factors at the interfacial crack tip located in the distance from the cusp crack tip vary with the location of the interfacial crack tip. From the results of the analysis, the complex potential functions and the thermal stress intensity factors for the cusp-type inclusion without the interfacial crack are derived under the cusp surface boundary conditions insulated or fixed to zero relative temperature.

A Study on Elevated Temperature Fatigue Crack Growth Using Round Bar Specimen with a Surface Crack (표면균열을 갖는 원형봉재 시편을 이용한 고온 피로균열성장 연구)

  • So, Tae-Won;Yun, Gi-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3415-3423
    • /
    • 1996
  • The compact tension specimen geometry has been widely used for measuring fatigue crack growth rates at elevated temperature when the fatigue load is under tension/tension condition. However, most of the elevated temperature components which have significant crack growth life experience fatigue load under tension/compression conditions. Thus test techniques are required since the compact tension specimen cannot be used for tension/compression loading. In this paper, a simplified test procedure for measureing fatigue crack growth rates is proposed, which employs a round bar specimen with a small surface crack. Fatigue crack growth rates under tension/ tension loading conditions at elevated temperature were measured according to the proposed procedure and compared with those previously measured by C/(T) specimens. Since both the measured crack growth rates were comparable, the fatigue crack growth rates under tension/ compression load can be reliably measured by the proposed procedure. For monitoring crack depth. DC electric potential method is employed and an optimal probe location and current input conditions were proposed.

Experimental Behaviors of the Constraint Effects A2 Depending on Displacement at Various Measuring Positions near Crack Front for STS 316L CT Specimen (균열선단 변위측정위치에 따른 STS 316L의 구속효과 A2 거동)

  • Han, Min-Su;Jang, Seok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.533-538
    • /
    • 2009
  • The magnitude of constraint effect $A_2$ values on the non-linear elastic plastic fracture toughness was experimentally estimated by using displacement at various measuring positions near crack tip. Constraint effect $A_2$ value was dependent on specimen configuration and on the measured displacement near crack front. The crack tip opening displacement in the vicinity of the crack tip front should be estimated within plastic region when appropriately constraint effect was calculated. It was found that the magnitude of constrain effect |$A_2$| is below 8.0 at the crack tip. But an appropriate location to measure the effective constraint effects $A_2$ at the critical value of J that crack initiation is characterizable by is r = 2mm and ${\theta}=90^{\circ}$ away from original crack tip, and the constraint effect |$A_2$| estimated is 5.3.

Internal Stress/Strain Analysis during Fatigue Crack Growth Retardation Using Neutron Diffraction (피로 균열 성장 지연에 대한 중성자 회절 응력 분석)

  • Seo, Sukho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.398-404
    • /
    • 2018
  • Fatigue crack growth retardation of 304 L stainless steel is studied using a neutron diffraction method. Three orthogonal strain components(crack growth, crack opening, and through-thickness direction) are measured in the vicinity of the crack tip along the crack propagation direction. The residual strain profiles (1) at the mid-thickness and (2) at the 1.5 mm away from the mid-thickness of the compact tension(CT) specimen are compared. Residual lattice strains at the 1.5 mm location are slightly higher than at the mid-thickness. The CT specimen is deformed in situ under applied loads, thereby providing evolution of the internal stress fields around the crack tip. A tensile overload results in an increased magnitude of the compressive residual stress field. In the crack growth retardation, it is found that the stresses are dispersed in the crack-wake region, where the highest compressive residual stresses are measured. Our neutron diffraction mapping results reveal that the dominant mechanism is by interrupting the transfer of stress concentration at the crack tip.