An analytical-computational method along with finite element analysis (FEA) has been employed to analyse the dynamic behaviour of deteriorated structures excited by time- varying mass. The present analysis is focused on the comparative study of a double cracked beam with inclined edge cracks and transverse open cracks subjected to traversing mass. The assumed computational method applied is the fourth order Runge-Kutta method. The analysis of the structure has been carried out at constant transit mass and speed. The response of the structure is determined at different crack depth and crack inclination angles. The influence of the parameters like crack depth and crack inclination angles are investigated on the dynamic behaviour of the structure. The results obtained from the assumed computational method are compared with those of the FEA for validation and found good agreements with FEA.
This paper studies fracture initiation direction of two parallel non-coplanar cracks of equal length. Using the dislocation pile-up modelling, singular integral equations for two parallel cracks subjected to mixed-mode loading are derived and the crack-tip field including singular and non-singular terms is obtained. The kinking angle is determined by using the maximum hoop stress criterion, or the ${\sigma}_{\theta}$-criterion. Results are presented for simple uniaxial tension and biaxial loading. The biaxiality ratio has a noticeable influence on crack growth direction. For the case of biaxial tension, when neglecting the T-stress the crack branching angle is overestimated for small crack inclination angles relative to the largest applied principal stress direction, and underestimated for large crack inclination angles.
Results pertaining to 3D investigations on the effect of the thickness on the stress fields at the crack front are presented. A 3D finite element analysis is performed using a modified single edge-notched tension specimen configuration, with an inclined crack to include mixed mode I-II. A technique to mesh the crack front (3D) with singular finite elements in ANSYS without using third party software is introduced and used in this study. The effect of the specimen thickness is explicitly investigated for six thicknesses ranging from 1 to 32 mm. In addition, three crack inclination angles, including pure Mode-I, are used to study the effect of mixed-mode I-II fracture. An attempt is made to correlate the extent of a particular stress state along the crack front to thickness. In addition, ${\sigma}_{zz}/{\nu}({\sigma}_{xx}+{\sigma}_{yy})$ contours at the crack front are presented as a useful means to analyze the stress state.
The problem of an infinite anisotropic material with a crack inclined with respect to the principal material axes is analyzed. The material is subjected to uniform biaxial load along its boundary. It is assumed that the material is homogeneous, but anisotropic. By considering the effect of the horizontal load, the distribution of stresses at the crack tip is analyzed. The problem of predicting critical stress in anisotropic solids which is a subject of considerable practical importance is examined and the effect of load biaxiality is made explicitly. The present results based on the normal stress ratio theory show significant effects of biaxial load, crack inclination angle and fiber orientation on the critical stress. The analysis is performed for a wide range of the crack angles and biaxial loads.
Georgiadi-Stefanidi, Kyriaki;Panagouli, Olympia;Kapatsina, Alexandra
Advances in concrete construction
/
제3권2호
/
pp.127-143
/
2015
Steel fibre reinforced concrete (SFRC) is an anisotropic material due to the random orientation of the fibres within the cement matrix. Fibres under different inclination angles provide different strength contribution of a given crack width. For that the pull-out response of inclined fibres is of great importance to understand SFRC behaviour, particularly in the case of fibres with hooked ends, which are the most widely used. The paper focuses on the numerical modelling of the pull-out response of this kind of fibres from high-strength cementitious matrix in order to study the effects of different inclination angles of the fibres to the load-displacement pull-out curves. The pull-out of the fibres is studied by means of accurate three-dimensional finite element models, which take into account the nonlinearities that are present in the physical model, such as the nonlinear bonding between the fibre and the matrix in the early stages of the loading, the unilateral contact between the fibre and the matrix, the friction at the contact areas, the plastification of the steel fibre and the plastification and cracking of the cementitious matrix. The bonding properties of the fibre-matrix interface considered in the numerical model are based on experimental results of pull-out tests on straight fibres.
The mechanical behaviour of layered concrete samples containing an internal crack was numerically studied by modelling the geo-mechanical specimens in the particle flow code in two dimensions (PFC2D). The numerical modelling software was calibrated with the experimental results of the Brazilian tensile strengths gained from the laboratory disc-type specimens. Then, the samples with the bedding layers and internal notch were numerically simulated with PFC2D under uniaxial compressive loading. In each specimen, the layers' thickness was 10 mm but the layer's inclination angle was changed to 0°, 30°, 60°, 90°, 120° and 150°. Of course, the layers'interfaces are considered to have very low strengths. The internal notch was kept at 3 cm in length however, its inclination angle was changed to 0°, 40°, 60° and 90°. Therefore, a total, of 24 numerical models were made to study the failure mechanism of the layered concrete samples. Considering these results, it has been concluded that the inclination angles of both internal crack and bedding layers affect the failure mechanism and uniaxial compressive strength of the concrete.
균열에 초음파가 입사될 경우, 반사파와 투과파가 발생한다. 균열에 의해 발생한 반사파와 투과파는 구조물 내부의 균열을 검출하기 위한 유용한 정보로 사용된다. 본 논문에서는 유한요소해석을 이용하여, 4가지 균열의 경사각도에 대해 균열주위의 모니터링 포인트에서의 동적변위를 계산하였다. 이를 바탕으로 푸리에 변환을 적용시켜 균열 주위에서 위치에 따라 주파수 특성이 변하는 경향을 조사하였다. 모델은 2차원 평면응력 경우를 고려하였고, 유한요소해석 프로그램은 ABAQUS/Explicit을 사용하였다.
To study the evolution mechanism of cracks in rocks with multiple defects, rock-like samples with multiple defects, such as strip-shaped through-going cracks and cavity groups, are used, and the crack propagation law and changes in AE (acoustic emission) and strain of cavity groups under different inclination angles are studied. According to the test results, an increase in the cavity group inclination angle can facilitate the initial damage degree of the rock and weaken the crack initiation stress; the initial crack initiation direction is approximately 90°, and the extension angle is approximately 75~90° from the strip-shaped through-going cracks; thus, the relationship between crack development and cavity group initiation strengthens. The specific performance is as follows: when the initiation angle is 30°, the cracks between the cavities in the cavity group develop relatively independently along the parallel direction of the external load; when the angle is 75°, the cracks between the cavities in the cavity group can interpenetrate, and slip can occur along the inclination of the cavity group under the action of the shear mechanism rupture. With the increase in the inclination angle of the cavity group, the AE energy fluctuation frequency at the peak stress increases, and the stress drop is obvious. The larger the cavity group inclination angle is, the more obvious the energy accumulation and the more severe the rock damage; when the cavity group angle is 30° or 75°, the peak strain of the local area below the strip-shaped through-going fracture plane is approximately three times that when the cavity group angle is 45° and 60°, indicating that cracks are easily generated in the local area monitored by the strain gauge at this angle, and the further development of the cracks weakens the strength of the rock, thereby increasing the probability of major engineering quality damage. The research results will have important reference value for hazard prevention in underground engineering projects through rock with natural and artificial defects, including tunnels and air-raid shelters.
This paper focuses on the cracking and fragmentation process in rock materials containing a pair of non-parallel flaws, which are through the specimen thickness, under vertical compression. Several numerical experiments are conducted with varying flaw arrangements that affect the initiation and tensile wing cracks, shear crack growth, and crack coalescing behaviors. To obtain realistic numerical results, a parallelized peridynamics formulation coupled with a finite element method, which is able to capture arbitrarily occurring cracks, is employed. From previous studies, crack initiation and propagation of tensile wing cracks, horsetail cracks, and anti-wing cracks are well understood along with the coalescence between two parallel flaws. In this study, the coalescence behaviors, their fragmentation sequences, and the role of an x-shaped shear band in rock material containing two non-parallel flaws are discussed in detail on the basis of simulation results strongly correlated with previous experimental results. Firstly, crack initiation and propagation of tensile wing cracks and shear cracks between non-parallel flaws are investigated in time-history and then sequential coalescing behavior is analyzed. Secondly, under the effect of varying inclination angles of two non-parallel flaws and overlapping ratios between a pair of non-parallel flaws, the cracking patterns including crack coalescence, fragmentation, and x-shaped shear band are investigated. These numerical results, which are in good agreement with reported physical test results, are expected to provide insightful information of the fracture mechanism of rock with non-parallel flaws.
Seyyed Amir Hossein, Madani;S. Mohammad, Mirhosseini;Ehsanolah, Zeighami;Alireza, NezamAbadi
Advances in concrete construction
/
제14권5호
/
pp.299-307
/
2022
Cement-based matrixes have low tensile strength and negligible ductility. Adding fibres to these matrixes will improve their mechanical properties and make these composites suitable for structural applications. Post-cracking tensile strength of steel fibers-reinforced cementitious composite materials is directly related to the number of transverse fibers passing through the crack width and the pulling-out behavior of each of the fibers. Therefore, the exact recognition of the pullout behavior of single fibers is necessary to understand the uniaxial tensile and bending behavior of steel fiber-reinforced concrete. In this paper, an experimental study has been carried out on the pullout behavior of 3D (steel fibers with totally two hooks at both ends), 4D (steel fibers with a total of four hooks at both ends), and 5D (steel fibers with totally six hooks at both ends) in which the fibers have been located either perpendicular to the crack width or in an inclined manner. The pullout behavior of the mentioned steel fibers at an inclination angle of 0, 15, 30, 45, and 60 degrees and with embedded lengths of 10, 15, 20, 25, and 30 millimetres is studied in order to explore the simultaneous effect of the inclination angle of the fibers relative to the alongside loading and the embedded length of fibers on the pullout response in each case, including the maximal pullout force, the slip of the maximum point of pullout force, pullout energy, fiber rupture, and concrete matrix spalling. The results showed that the maximum pullout energy in 3D, 4D, and 5D steel fibers with different embedded lengths occurs at 0 to 30° inclination angles. In 5D fibers, maximum pullout energy occurs at a 30° angle with a 25 mm embedded length.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.