• Title/Summary/Keyword: crack evaluation

Search Result 1,265, Processing Time 0.031 seconds

Evaluation Method of Micro Crack in a Ceramic Ferrule by Resonant Ultrasound Spectroscopy (공명초음파법을 이용한 세라믹제 페롤의 미소 크랙 평가법)

  • Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.59-66
    • /
    • 2006
  • In this paper, we suggested an evaluation method of cracks in a ceramic product by resonant ultrasound spectroscopy. For experiment, we manufactured nondestructive measurement system by resonant ultrasound spectroscopy and measured resonance frequencies of acceptable and cracked ferrules. The evaluation criterion of ferrule is based on the comparison of resonance frequencies between acceptable and cracked-ferrule. The criterion value that defined by suggested formula is 2. By using the criterion, it is possible to evaluate both acceptable and cracked-ferrule.

Quantitative Evaluation of Fatigue Strength using a Surface defective Low Carbon Steel (저탄소강의 표면결개 방의 영향에 의한 피로강도의 정량적 평가)

  • 윤명진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.42-49
    • /
    • 1995
  • It is not clearly known how defects or inclusions of a low carbon steel affect a fatigue strength. We study this issue using SM15C materials. The investigation is carried out by a quantitative evaluation, and experimental findings are: (1) a fatigue limit of A series smooth specimen is 205MPa, and that of B, C, D series is 245MPa, 304MPa and 245MPa, respectively. (2) the fatigue limit varies with respects to the stress distribution I the vicinity of a defects and crack. (3) the micro hole creates a half-circular shape crack, while the hole depth is not critical to the fatigue strength, (4) considering the fatigue strength, the hole diameter is more significant than the hole depth, and (5) Fatigue limit of artificially defected specimen is lower than that of a flawless one (5-10%), however, there exist allowance size and depth of defect which don't get to influence at fatigue limit.

  • PDF

An Evaluation Method of fracture Toughness on Interface Cracks in Bonded Dissimilar Materials (이종 접합체의 계면균열에 대한 파괴인성의 평가방법)

  • 정남용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.110-116
    • /
    • 2003
  • In this paper, an evaluation method of fracture toughness on interface cracks has been investigated under various mixed-mode conditions of the bonded scarf joints. Two types of the bonded scarf joints with an interface crack were prepared to analyze the stress intensity factors using boundary element method(BEM) and to perform the fracture toughness test. From the results of fracture toughness experiments and BEM analysis, an evaluation method of fracture toughness on interface cracks in the bonded dissimilar materials has been proposed and discussed.

Elastic-plastic Fracture Mechanics Analyses for Burst Pressure Prediction of Through-wall Cracked Tubes (관통균열 세관의 파열압력 예측을 위한 탄소성 파괴역학 해석)

  • Chang Yoon-Suk;Moon Seong-In;Kim Young-Jin;Hwang Seong-Sik;Kim Joung-Soo;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1361-1368
    • /
    • 2005
  • The structural and leakage integrity of steam generator tubes should be sustained all postulated loads with appropriate margin even if a crack is present. During the past three decades, for effective integrity evaluation, several limit load solutions have been used world-widely. However, to predict accurately load carrying capacities of specific components under different conditions, the solutions have to be modified by using lots of experimental data. The purpose of this paper is to propose a new burst pressure estimation scheme based on fracture mechanics analyses for steam generator tube with an axial or circumferential through-wall crack. A series of three dimensional elastic-plastic finite element analyses were carried out and, then, closed-form estimation equations with respect to both J-integral and crack opening displacement were derived through reference stress method. The developed engineering equations were utilized for structural integrity evaluation and the resulting data were compared to the corresponding ones fiom experiments as well as limit load solutions. Thereafter, since the effectiveness was proven by promising results, it is believed that the proposed estimation scheme can be used as an efficient tool for integrity evaluation of cracked steam generator tubes.

Effect of the factor developing the Heat of Hydration on Durability Design in the Subway Concrete Structure (수화열 발생인자가 지하철 콘크리트 구조물의 내구설계에 미치는 영향)

  • Lim Young-Su;Kim Eun Kyum;Sung Ki Han
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1131-1137
    • /
    • 2004
  • With the recent continuous expansion of subways, newly created subways tend to have lower locations and wider sections. Furthermore. since box structures and evacuating tunnels are classified into a category of mass-concrete. the thermal-stress, emitted from the inside. causes cracks to structures from the inception of constructing. In this paper, thermal-stress analysis and durability evaluation of box structure were carried out to investigate relationship between durability and parameter causing the heat of hydration. Through the examination, this paper tries to find out satisfactory solutions to regulated thermal crack and ensure the required duration period. The results of this paper showed that to control thermal crack and guarantee the required duration period it was more effective to use low-heat-portland cement and moderateheat-portland cement. As cement volume due to reduction of water-cement ratio increased, the possibility of thermal cracks occurrence increased but results of durability evaluation was different depending on evaluation method. The results showed that the appropriate water-cement ratio to control the heat of hydration and satisfy the required durability was $45\∼55\%$. And it was showed that during placement of concrete blocks ambient temperature affect the heat of hydration. thermal crack and long-term durability largely and when concrete was placed at low temperature to control thermal crack. it need to try to guarantee the required duration period. Henceforth, by studying not only internal and external conditions, such as the relative humidity and the unit weight. but also methods, to evaluate durability, in accordance with domestic situations, more reasonable design of durability should be achieved.

  • PDF

Effects of the Loading Rate and Humidity in the Fracture Toughness Testing of Alumina

  • Cho, Seong-Jai;Kim, Jai-Chun;Yoon, Kyung-Jin;Chu, Min-Cheol;Lee, Yoon-Cheol;Quinn George;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.4-9
    • /
    • 2006
  • To test the fracture toughness of alumina; a Surface-Crack-in-Flexure (SCF) method, a Single-Edge-Precracked-Beam (SEPB) method and a Single-Edge-V-Notched-Beam (SEVNB) method were used at crosshead rates ranging from 0.005 mm/min to 2 mm/ min and relative humidity ranging from $15\%\;to\;80\%$. The results show that the fracture toughness tested by the SCF method increases with either an increasing loading rate or decreasing relative humidity; in contrast, the toughness by the SEPB method and the SEVNB method does not depend on the loading rate or the relative humidity. Theoretical analysis of the way slow crack growth affects the apparent fracture toughness indicates that the three testing methods have different effects with respect to the loading rate and the relative humidity; moreover, these differences are attributable to differences in the size of the cracks or notches.

A Study on the Fatigue Crack Evaluation Method of Railway Bogie Frame (철도차량 대차를 피로균열 평가법 연구)

  • Jun, Hyun-Kyu;Seo, Jung-Won;Lee, Dong-Hyong;Kim, Hyeong-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.16-24
    • /
    • 2009
  • In this study, fatigue crack growth rate of a cracked railway bogie frame under variable amplitude loading is predicted by applying linear elastic fracture mechanics. For this purpose, we find the critical points by reference surveying on cracked railway bogie frames. And we make an effective load history by synthesizing the dynamic load measured from the critical points of railway bogie frame during commercial line operation and the static load calculated from structural analysis. Crack growth analyses are performed at the 3 critical points under the commercial operation loading condition by assuming an initial crack size as 40 mm. and the results are compared with the experimental results from Japanese railway bogie frame crack growth case. From the analysis results, we find that around 500,000 km operating distance is necessary to bring crack growth from the initial crack to unstable crack. And it takes around 3.8 normal operating years. We conclude that it is enough time to detect the crack between normal maintenance period.

Service Life Evaluation of RC Column Exposed to Carbonation Considering Time-dependent Crack Pattern (시간의존성 균열 패턴을 고려한 탄산화에 노출된 콘크리트의 확률론적 내구수명 평가)

  • Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • RC(Reinfored Concrete) structures exposed to carbonation in urban city have durability degradation with extended service life and cracks in concrete causes a local accelerated carbonation. In the present work, crack effect on carbonation depth is investigated and the service life of RC structure is evaluated considering cracks from early age and time-dependent cracks based on the previous field investigation. DFP(Durability Failure Probability), safety index, and the related service life are calculated considering the time to crack width reaches to maximum crack width(0.3mm). The results with time effect on crack width show lower DFP and longer service life, which seems to be reasonable compared with conservative results from crack effect from initial stage. Furthermore, crack effect is evaluated to be insignificant on DFP and service life. The technique with time-dependent crack effect on carbonation can be effectively used for RC structure containing cracking in use.

Evaluation of Fatigue Crack Propagation Depending on Fiber Array Direction in Woven CFRP Composites (평직 CFRP 복합재료의 섬유 배열각도별 피로 균열 성장 평가)

  • Geum, Jin-Hwa;Choi, Jung-Hun;Park, Hong-Sun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.717-723
    • /
    • 2010
  • Many researchers have studied woven fabric carbon-fiber-reinforced composite (CFRP) materials but the study of fatigue crack propagation in composites has been insufficient. It has known that the crack propagation behavior differs depending on the load and the fiber direction. In this study, the fatigue crack propagation along two different fiber array directions ($0^{\circ}$, $45^{\circ}$) in plain woven CFRP composite was investigated. Fatigue crack propagation tests were conducted on the woven CFRP composite under a sinusoidal waveform load with stress ratios of 0.1 at a frequency of 10 Hz. Once the results of the tests were obtained, fatigue crack propagation rates (da/dN) were plotted against the energy release rate amplitude (${\Delta}G$), and it was observed that either mode I crack propagation or mixed mode crack propagation occurs depending on the fiber array direction.

Evaluation of Micro Crack Using Nonlinear Acoustic Effect (초음파의 비선형 특성을 이용한 미세균열 평가)

  • Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.352-357
    • /
    • 2008
  • The detection of micro cracks in materials at the early stage of fracture is important in many structural safety assurance problems. The nonlinear ultrasonic technique (NUT) has been considered as a positive method for this, since it is more sensitive to micro crack than conventional linear ultrasonic methods. The basic principle is that the waveform is distorted by nonlinear stress-displacement relationship on the crack interface when the ultrasonic wave transmits through, and resultantly higher order harmonics are generated. This phenomenon is called the contact acoustic nonlinearity (CAN). The purpose of this paper is to prove the applicability of CAN experimentally by detection of micro fatigue crack artificailly initiated in Aluminum specimen. For this, we prepared fatigue specimens of Al6061 material with V-notch to initiate the crack, and the amplitude of second order harmonic was measured by scanning along the crack direction. From the results, we could see that the harmonic amplitude had good correlation with COD and it can be used to detect the crack depth in more accurately than the common 6 dB drop echo method.