• 제목/요약/키워드: crack evaluation

검색결과 1,260건 처리시간 0.025초

Stress Corrosion Cracking in the Pre-Cracked Specimens of Type 403 Stainless Steel

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • 제3권1호
    • /
    • pp.14-19
    • /
    • 2004
  • Crack growth rate and threshold stress intensity factor for stress corrosion cracking(SCC), $K_{ISCC}$ were measured for type 403 stainless steel in 3,5% NaCl solution at room temperature and SCC was monitored by electrochemical noise technique during $K_{ISCC}$ testing. In rising load test, pits were formed at the tip of pre-crack for the pre-cracked compact tension specimen unlike in smooth round specimen in which only unstable pits were observed and hence immune to SCC. Micro-cracks were found to initiate from the pits in the former specimen, and initiation of micro-crack as well as macro-crack was detected by electrochemical noise technique in rising load $K_{ISCC}$ tests. Crack growth rate increased with increasing either displacement rate or stress intensity factor at crack initiation and was higher in rising load $K_{ISCC}$ test compared to constant load $K_{ISCC}$ test at given stress intensities.

피로균열 성장과정에 대한 평가방법의 영향 (Influence of Evaluation Methods for Fatigue Crack Growth Process)

  • 안철봉
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.119-125
    • /
    • 1999
  • The distribution of fatigue crack growth rate is subjected to the measuring interval and calculated method of growth rate. In this paper, in order to establish the method of determining the distribution of fatigue crack growth rate, which ignores those influences, a series of fatigue crack growth experiments and measuring intervals of crack length calculated reasonable are presented. The main conclusions obtained are summarized as follows: 1) As a result of the ΔP constant test and ΔK constant test, it is thought that an approximate measuring interval of 0.3~0.7mm is reasonable, which allows for few errors and is little subjected to the calculated method of crack growth rate. 2) After generally comparing the error estimation by using the experimental data of CCT specimen with the error rating of the CT specimens, it is possible that the fatigue test has few errors within the measuring interval, ξ(Δa/W)=0.0067~0.017, regardless of the dimension of specimen geometry.

  • PDF

스폿용접된 자동차 차체용 알루미늄 박판의 피로균열진전의 파괴역학적 평가 (A fracture mechanics evaluation on the fatigue crack propagation at spot welded aluminum joint in passenger car body)

  • 박인덕;남기우;강석봉
    • 한국해양공학회지
    • /
    • 제11권3호
    • /
    • pp.20-28
    • /
    • 1997
  • The fatigue crack propagation properties and fatigue life of two kinds of Al body panel for automobile were examined experimentally by using the plate specimen and the single spot welding specimen. The fatigue limit of spot welding specimens was lower than that of a plate specimen. The fatigue limit was similar in two kinds of spot welding specimen. The shape and size of crack propagation were observed and measured on beach mark of fracture surface. The crack propagation of surface crack specimen showed almost same tendency to that of a thick plate as almost semi-elliptical. In spot welding specimen, the fatigue crack occurred in inside surface of nugget area was almost semi-elliptical. The crack growth rate can be explained using equation of stress intensity factors.

  • PDF

CNN 모델을 활용한 콘크리트 균열 검출 및 시각화 방법 (Concrete Crack Detection and Visualization Method Using CNN Model)

  • 최주희;김영관;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.73-74
    • /
    • 2022
  • Concrete structures occupy the largest proportion of modern infrastructure, and concrete structures often have cracking problems. Existing concrete crack diagnosis methods have limitations in crack evaluation because they rely on expert visual inspection. Therefore, in this study, we design a deep learning model that detects, visualizes, and outputs cracks on the surface of RC structures based on image data by using a CNN (Convolution Neural Networks) model that can process two- and three-dimensional data such as video and image data. do. An experimental study was conducted on an algorithm to automatically detect concrete cracks and visualize them using a CNN model. For the three deep learning models used for algorithm learning in this study, the concrete crack prediction accuracy satisfies 90%, and in particular, the 'InceptionV3'-based CNN model showed the highest accuracy. In the case of the crack detection visualization model, it showed high crack detection prediction accuracy of more than 95% on average for data with crack width of 0.2 mm or more.

  • PDF

피로균열의 지연거동에 따른 수명예측 및 비파괴평가 (Life Prediction by Retardation Behavior of Fatigue Crack and its Nondestructive Evaluation)

  • 남기우;김선진
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.36-48
    • /
    • 1999
  • Fatigue life and crack retardation behavior after penetration were experimentally examined using surface pre-cracked specimens of aluminium alloy 5083. The Wheeler model retardation parameter was used successfully to predict crack growth behavior after penetration. By using a crack propagation rule, the change in crack shape after penetration can be evaluated quantitatively. Advanced, waveform-based acoustic emission (AE) techniques have been successfully used to evaluate signal characteristics obtained form fatigue crack propagation and penetratin behavior in 6061 aluminum plate with surface crack under fatigue stress. Surface defects in the structural members are apt to be origins of fatigue crack growth, which may cause serious failure of the whole structure. The nondestructive analysis on the crack growth and penetration from these defects may, therefore, be one of the most important subjects on the reliability of the leak before break (LBB) design. The goal of the present study is to determine if different sources of the AE could be identified by characteristics of the waveforms produced from the crack growth and penetration. AE signals detected in four stages were found to have different signal per stage. With analysis of waveform and power spectrum in 6061 aluminum alloys with a surface crack, it is found to be capabilities on real-time monitoring for the crack propagation and penetration behavior of various damages and defects in structural members.

  • PDF

고강도 알미늄 합금재에 있어서 크랙열림점 평가에 관한 연구(I) (A Study on Evaluation of Crack Opening Point in High Strength Aluminum Alloy(I))

  • 최병기
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.100-106
    • /
    • 1993
  • This paper aims to synthesize the research on fatigue fracture mechanisms of high strength aluminum alloys which are widely used in motorcars or airplanes to prevent accidents. To measure the data of crack opening ratio, the same materials and method are used for evaluating the fatigue crack propagation rate as an effective stress intensity factor. But, many researchers have brought different results. An exact crack opening ratio was, therefore, proposed for getting a more accurate fatigue crack propagation rate. The main conclusions obtained are as follows. (1) As a result of the fatigue test, the value of the crack opening ratio is the same regardless of the stress ratio. (2) The value of crack opening ratio is different according to the measuring point. After measuring the crack propagation rate by using an effective stress intensity factor, the crack opening ratio value measured at the crack mouth by a clip gage, or measured rear of the specimen by a strain gage is more accurate than that by any other measuring test.

  • PDF

2D evaluation of crack openings using smeared and embedded crack models

  • Gamino, Andre Luis;Manzoli, Osvaldo Luis;de Oliveira e Sousa, Jose Luiz Antunes;Bittencourt, Tulio Nogueira
    • Computers and Concrete
    • /
    • 제7권6호
    • /
    • pp.483-496
    • /
    • 2010
  • This work deals with the determination of crack openings in 2D reinforced concrete structures using the Finite Element Method with a smeared rotating crack model or an embedded crack model. In the smeared crack model, the strong discontinuity associated with the crack is spread throughout the finite element. As is well known, the continuity of the displacement field assumed for these models is incompatible with the actual discontinuity. However, this type of model has been used extensively due to the relative computational simplicity it provides by treating cracks in a continuum framework, as well as the reportedly good predictions of reinforced concrete members' structural behavior. On the other hand, by enriching the displacement field within each finite element crossed by the crack path, the embedded crack model is able to describe the effects of actual discontinuities (cracks). This paper presents a comparative study of the abilities of these 2D models in predicting the mechanical behavior of reinforced concrete structures. Structural responses are compared with experimental results from the literature, including crack patterns, crack openings and rebar stresses predicted by both models.