• Title/Summary/Keyword: crack distribution

Search Result 710, Processing Time 0.025 seconds

The Effect of the CFRP/GFRP Composite Thickness on AE Characteristics and Mixed Mode Crack Behavior (CFRP/GFRP 적층복합재의 두께가 혼합모드 균열거동과 AE에 미치는 영향)

  • Yun, Yu-Seong;Kim, Da-Jin-Sol;Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.9-14
    • /
    • 2014
  • Recently many efforts and researches have been done to cope with industrial facilities that require a low energy machines due to the gradual depletion of the natural resources. The fiber-reinforced composite materials in general have good properties and have the proper mechanical properties according to the change of the ply sequences and fiber distribution types. However, in the fiber-reinforced composite material, there are several problems, including fiber breaking, peeling, layer lamination, fiber cracking that can not be seen from the metallic material. Particularly, the fracture and delamination are likely to be affected by the thickness of the stacking laminates when the bi-material laminated structure is subjected to a load of the mixed mode. In this study, we investigated the effect of the thickness ratio of the difference in the CFRP/GFRP bi-material laminate composites by measuring the cracking behavior and the AE characteristics in a mixed mode loading, which may be generated in the actual structure. The results show that the thickness of the CFRP becomes more thick, the mode I energy release rate becomes a larger, and also the influence of mode I is greater than that of mode II. In addition, AE amplitude which shows the level of the damage in the structure was obtained the more damage in the CFRP with the thin thickness.

A Study on the Fatigue-Fractured Surface of Normalized SS41 Steel and M.E.F. Dual Phase Steel by an X-ray Diffraction Technique (X-선 회절에 의한 SS41 불림재와 M.E.F. 복합 조직강의 피로 파단면 해석에 관한 연구)

  • Oh, Sae-Wook;Park, Young-Chul;Park, Soo-Young;Kim, Deug-Jin;Hue, Sun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.10-18
    • /
    • 1996
  • This study verified the relationship between fracture mechanics parameters and X-ray parameters for normalized SS41 steel with homogeneous crystal structure and M.E.F. dual phase steel(martensite encapsulated islands of ferrite). The fatigue crack propagation test were carried out and X-ray diffraction technique was applied to fatigue fractured surface. The change in X-ray parameters(residual stress, half-value breadth) according to the depth of fatigue fractured surface were investigated. The depth of maximum plastic zone, $w_y$, were determined on the basis of the distribution of the half-value breadth for normalized SS41 steel and that of the residual stress for M.E.F. dual phase steel. $K_{max}$ could be estimated by the measurement of $w_y$.

  • PDF

A Study on Permeability Characteristics of Damaged Granite (화강암 공시체의 응력레벨에 따른 투수특성에 대한 연구)

  • Kim, Jong-Tae;Seiki, T.;Kang, Mee-A;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.135-142
    • /
    • 2007
  • Although rock itself has high strength or low permeability, engineering properties of rock masses are significantly influenced by discontinuities such as cracks and joints. Considered with possibility of groundwater flow in massive rock mass of deep subsurface, the connectivity of micro cracks should be analyzed as a conduit of ground-water flow. The objective of this study is to estimate permeability characteristics of granite dependent on damage process with application of joint distribution analysis and modeling of permeability analysis in rock masses. In case of average permeability coefficients, the modeling results based on micro cracks data are well matched with the results from permeability tests. Based on the visualization result of three dimensional model, the average permeability coefficients through the discharge plane have a positive relationship with the number of microcrack induced by rock damage.

Measurement of Emotional Transition Using Physiological Signals of Audiences (관객의 생체신호 분석을 통한 감성 변화)

  • Kim, Wan-Suk;Ham, Jun-Seok;Sohn, Choong-Yeon;Yun, Jae-Sun;Lim, Chan;Ko, Il-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.168-176
    • /
    • 2010
  • Audience observing visual media with care experience lots of emotional transition according to characteristics of media. Enjoy, sadness, surprising, etc, a variety of emotional state of audiences is often arranged by James Russell's 'A circumplex model of affect' utilized on psychology. Especially, in various emotions, 'Uncanny' mentioned by Sigmund Freud is represented a sharp medium existing in a crack of clearly emotional conception. Uncanny phenomenon is an emotional state of changing from unpleasant to pleasant on an audience observing visual media is been aware of immoral media generally, therefore, because this is a positive state on a social taboo, we need to analyze with a scientific analysis clearly. Therefore, this study will organize James Russell's 'A circumplex model of affect' and uncanny phenomenon, will be progressed to establish a hypothesis about a state of uncanny on audiences observing visual media and analyze results of the physiological signals experiment based on ECG(Electronic Cardiogram), GSR(Galvanic Skin Response) signals with distribution, distance, and moving time in a circumplex model of affect.

Early age behavior analysis for reinforced concrete bridge pier

  • Wang, Xianfeng;Li, Dawang;Han, Ningxu;Xing, Feng
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1041-1051
    • /
    • 2016
  • In this study, the construction of a reinforced concrete bridge pier was analyzed from durability point of view. The goal of the study is to analyze the crack iniation condition due to construction and present some recommendations for construction conditions of the reinforced concrete bridge pier. The bridge is located at the western port area of Shenzhen, where the climate is high temperature and humidity. To control the cracking of concrete, a construction simulation was carried out for a heat transfer problem as well as a thermal stress problem. A shrinkage model for heat produced due to cement hydration and a Burger constitutive model to simulate the creep effect are used. The modelling based on Femmasse(C) is verified by comparing with the testing results of a real underground abutment. For the bridge pier, the temperature and stress distribution, as well as their evolution with time are shown. To simulate the construction condition, four initial concrete temperatures ($5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$) and three demoulding time tips (48h, 72h, 96h) are investigated. From the results, it is concluded that a high initial concrete temperature could result in a high extreme internal temperature, which causes the early peak temperature and the larger principle stresses. The demoulding time seems to be less important for the chosen study cases. Currently used 72 hours in the construction practice may be a reasonable choice.

A new precast wall connection subjected to monotonic loading

  • Vaghei, Ramin;Hejazi, Farzad;Taheri, Hafez;Jaafar, Mohd Saleh;Ali, Abang Abdullah Abang
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.1-27
    • /
    • 2016
  • Final construction project cost is significantly determined by construction rate. The Industrialized Building System (IBS) was promoted to enhance the importance of prefabrication technology rather than conventional methods in construction. Ensuring the stability of a building constructed by using IBS is a challenging issue. Accordingly, the connections in a prefabricated building have a basic, natural, and essential role in providing the best continuity among the members of the building. Deficiencies of conventional precast connections were observed when precast buildings experience a large induced load, such as earthquakes and other disasters. Thus, researchers aim to determine the behavior of precast concrete structure with a specific type of connection. To clarify this problem, this study investigates the capacity behavior of precast concrete panel connections for industrial buildings with a new type of precast wall-to-wall connection (i.e., U-shaped steel channel connection). This capacity behavior is compared with the capacity behavior of precast concrete panel connections for industrial buildings that used a common approach (i.e., loop connection), which is subjected to monotonic loading as in-plane and out-of-plane loading by developing a finite element model. The principal stress distribution, deformation of concrete panels and welded wire mesh (BRC) reinforcements, plastic strain trend in the concrete panels and connections, and crack propagations are investigated for the aforementioned connection. Pushover analysis revealed that loop connections have significant defects in terms of strength for in-plane and out-of-plane loads at three translational degrees of freedom compared with the U-shaped steel channel connection.

Assessment of elastic-wave propagation characteristics in grouting-improved rock mass around subsea tunnels (해저터널 주변 그라우팅 보강암반의 탄성파 전달특성 평가)

  • Kim, Ji-Won;Hong, Eun-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • Grouting is frequently used before the construction of subsea tunnels to mitigate problems that can occur in weak ground zones such as joints, faults or unconsolidated settlements during construction. The grout material injected into rock mass often flows through the discontinuities present in the host rock and hence, joint properties such as its distribution, roughness and thickness greatly affect the properties of grouting-improved rocks. The grouting-improved zones near subsea tunnels are also subjected to high water pressures that can cause long-term weathering in the form of changes in grout microstructure and crack formation and lead to subsequent changes in ground properties. Therefore, an assessment method is needed to accurately measure changes in the grouting-improved zones near subsea tunnels. In this study, the elastic wave propagation characteristics in grouting-improved rocks were tested for various axial stress levels, curing time, joint roughness and thickness conditions under laboratory conditions and the results were compared with wave velocity standards in different Korean rock mass classification systems to provide a basis for inferring improvement in grouted rock-mass.

Load Sharing Control of Driven Roll in Continuous Caster (연속주조기에서 스트랜드 구동롤의 인발력 분배 제어)

  • 천창근;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.321-327
    • /
    • 2003
  • As the continuous casting process is to product slab with high temperature liquid steel, the main role of strand driven roll is to withdraw slab from mold as operator set up casting speed pattern. The strand driven roll in old cast machine is controlled casting speed only. Due to inaccuracies in drive setting up, varying roll diameters, bulging in the product, withdrawal force was distributed irregularly. As a result, because of horizontal crack in slab comer, high casting speed can't be achieved. In this paper, the correlation between the distribution of withdrawal force and slab quality is investigated and the new control algorithm which can be distributed regularly the withdrawal force of strand driven roll is proposed. The principle of proposed algorithm is not to control motor torque directly but to control motor speed reference according to sharing ratio of withdrawal force which is set up in high level controller. The proposed algorithm implemented in POSCO Kwangyang 1-4 continuous casting plant.

A Study on the Problems of the Occupants for the Aspects of the Improper Construction of Housing ( II ) - The Relations between the Actual Conditions (주택의 하자발생으로 인한 소비자문제에 관한 연구( II ) - 주택특성에 따른 하자실태와 피해유형과의 관계 -)

  • 강순주
    • Journal of the Korean housing association
    • /
    • v.3 no.2
    • /
    • pp.75-88
    • /
    • 1992
  • The purpose of this study is to analyze the relations between the conditions of the flaws and the types of damage according to the characteristics of housing, and then to provide with some basic data for the construction of houses of good quality. The effective analytic data for this research are 558 of all 700 questionnaires gathered through distribution collection and personal interviews conducted from June 22, 1992 Through to July 6, towards the first occupants in apartment houses, tenement houses, multidetached houses, multifamily houses and detached houses that last 10 years after construction, located in Seoul and Kyungki-Do. Our major findings are as under:1) Our data reveal that the ratio of flaw occurrence by general type breaks down into noise 53.7%, crack 39.3%, dew condensation 36.9%, windows and doors 36.6%, structure and frame 35.3%, built-in materials 33.3%, the inferiority of equipments/facilities 29.0%, ill drainage 22.0%, and the leakage of water 19.3% average number of flaw occurrence, multi detached house is the highest as 13.7, apartment house 10.5, tenement house 10.5, detached house 10.51 and multifamily house 8.7.3) As regards the degree of flaw occurrence, the flaw of noise is as serious in the degree of occurence as it is high in the ratio of occurrence. Particularly, the following contrastive phenomena are found: multidetached house is normal (2.0) in the degree of occurrence but it is high in the ratio of occurrence: while multifamily house is 2.9 in the degree of occurrence but it is low in the ratio of occurrence.4) In view of the relations between the types of flaws and those of damage, the flaw type which significantly influences on the injury of spirit and health is built-in materials; the flaw types that have considerable effect on the damage of house and home life are the inferiority of equipments/facilities, due condensation, and inferior windows and doors; and the flaw types that have a bad influence over the reliance on the constructors are the inferiority of equipments/facilities, due condensation and built-in materials.

  • PDF

Structural Behavior on the Externally Strengthened Bridge Deck with Glass Fiber Reinforced Polymer (유리섬유보강재로 외부부착 보강된 교량 바닥판의 구조거동)

  • 오홍섭;심종성;최장환
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.922-933
    • /
    • 2002
  • Since the deterioration of concrete bridge decks affect durability, safety, and function, structural rehabilitation of damaged concrete deck that was strengthened with Fiber Reinforced Polymer(FRP) is increasing the latest. But recent studies on the strengthened structures are focused on the static behavior, however only a few studies on the fatigue behavior are performed. In this study, static and fatigue behavior of strengthened deck were peformed on 11 deck specimens strengthened with sheet typed Glass Fiber Reinforced Polymer(GFRP) that were reinforced by two different strengthening methods for the static test. A amount of strengthening material in the each direction such as transverse and longitudinal was adopted experimental variables for the static test and also the stress level of the static maximum load are adopted for the fatigue test. By the results of the experimental study, with respect to the strengthened decks, the resistance effect of crack propagation and effect of stress distribution are improved. In addition, the rate of variation of compliance decreased.