• Title/Summary/Keyword: crack breathing

Search Result 17, Processing Time 0.02 seconds

Noise and Fault Diagnosis Using Control Theory

  • Park, Rai-Wung;Sul Cho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2000
  • The aim of this paper is to describe an advanced method of the fault diagnosis using Control Theory with reference to a crack detection, a new way to localize the crack position under influence of the plant disturbance and white measurement noise on a rotating shaft. As the first step, the shaft is physically modelled with a finite element method as usual and the dynamic mathematical model is derived from it using the Hamilton-principle and in this way the system is modelled by various subsystems. The equations of motions with a crack are established by the adaption of the local stiffness change through breathing and gaping[1] from the crack to the equation of motion with an undamaged shaft. This is supposed to be regarded as a reference system for the given system. Based on the fictitious model of the time behaviour induced from vibration phenomena measured at the bearings, a nonlinear state observer is designed in order to detect the crack on the shaft. This is the elementary NL-observer(EOB). Using the elementary observer, an Estimator(Observer Bank) is established and arranged at the certain position on the shaft. In case, a crack is found and its position is known, the procedure, fro the estimation of the depth is going to begin.

  • PDF

Vibration Analysis of Cracked Rotor (균열 회전체의 진동해석)

  • Jun, Oh-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.925-934
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterative method. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.

  • PDF

Dynamic responses of a beam with breathing cracks by precise integration method

  • Cui, C.C.;He, X.S.;Lu, Z.R.;Chen, Y.M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.891-902
    • /
    • 2016
  • The beam structure with breathing cracks subjected to harmonic excitations was modeled by FEM based on Euler-Bernoulli theory, and a piecewise dynamical system was deduced. The precise integration method (PIM) was employed to propose an algorithm for analyzing the dynamic responses of the deduced system. This system was first divided into linear sub-systems, between which there are switching points resulted from the breathing cracks. The inhomogeneous terms due to the external excitations were tackled by introducing auxiliary variables to express the harmonic functions, hence the sub-systems are homogeneous. The PIM was then applied to solve the homogeneous sub-systems one by one. During the procedures, a predictor-corrector algorithm was presented to determine the switching points accurately. The presented method can provide solutions with an accuracy to a magnitude of $10^{-12}$ compared with exact solutions obtained by the theories of ordinary differential equations. The PIM results are much more accurate than Newmark ones with the same time step. Moreover, it is found that the PIM can maintain a high level of accuracy even when the time step increases within a relatively wide range.

Bi-spectrum for identifying crack and misalignment in shaft of a rotating machine

  • Sinha, Jyoti K.
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.47-60
    • /
    • 2006
  • Bi-spectrum is a tool in the signal processing for identification of non-linear dynamic behvaiour in systems, and well-known for stationary system where components are non-linearly interacting. Breathing of a crack during shaft rotation is also exhibits a non-linear behaviour. The crack is known to generate 2X (twice the machine RPM) and higher harmonics in addition to 1X component in the shaft response during its rotation. Misaligned shaft also shows similar such feature as a crack in a shaft. The bi-spectrum method has now been applied on a small rotating rig to observe its features. The bi-spectrum results are found to be encouraging to distinguish these faults based on few experiments conducted on a small rig. The results are presented here.

Noise and Fault Diagonois Using Control Theory

  • Park, R. W.;J. S. Kook;S. Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.301-307
    • /
    • 1998
  • The goal of this paper is to describe an advanced method of the fault diagnois using Control Theory with reference to a crack detection, a new way to localize the crack position under infulence of the plant disturbance and white measurement noise on a rotating shaft. As a first step, the shaft is physically modelled with a finite element method as usual and the dynamic mathematical model is derived from it using the Hamilton - principle and in this way the system is modelled by various subsystems. The equations of motion with crack is established by adaption of the local stiffness change through breathing and gaping from the crack to the equation of motion with un-damaged shaft. This is supposed to be regarded as reference for the given system. Based on the fictitious model of the time behaviour induced from vibration phenomena measured at the bearings, a nonlinear State Observer is designed in order to detect the crack on the shaft. This is elementary NL- observer(EOB). Using the elementary observer, an Estimator(Observer) Bank is established and arranged at the certain position on the shaft. In case a crack is found and its position is known, the procedure for the estimation of the depth is going to begin.

  • PDF

Prediction of Alcohol Consumption Based on Biosignals and Assessment of Driving Ability According to Alcohol Consumption (생체 신호 기반 음주량 예측 및 음주량에 따른 운전 능력 평가)

  • Park, Seung Won;Choi, Jun won;Kim, Tae Hyun;Seo, Jeong Hun;Jeong, Myeon Gyu;Lee, Kang In;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.27-34
    • /
    • 2022
  • Drunk driving defines a driver as unable to drive a vehicle safely due to drinking. To crack down on drunk driving, alcohol concentration evaluates through breathing and crack down on drinking using S-shaped courses. A method for assessing drunk driving without using BAC or BrAC is measurement via biosignal. Depending on the individual specificity of drinking, alcohol evaluation studies through various biosignals need to be conducted. In this study, we measure biosignals that are related to alcohol concentration, predict BrAC through SVM, and verify the effectiveness of the S-shaped course. Participants were 8 men who have a driving license. Subjects conducted a d2 test and a scenario evaluation of driving an S-shaped course when they attained BrAC's certain criteria. We utilized SVR to predict BrAC via biosignals. Statistical analysis used a one-way Anova test. Depending on the amount of drinking, there was a tendency to increase pupil size, HR, normLF, skin conductivity, body temperature, SE, and speed, while normHF tended to decrease. There was no apparent change in the respiratory rate and TN-E. The result of the D2 test tended to increase from 0.03% and decrease from 0.08%. Measured biosignals have enabled BrAC predictions using SVR models to obtain high Figs in primary and secondary cross-validations. In this study, we were able to predict BrAC through changes in biosignals and SVMs depending on alcohol concentration and verified the effectiveness of the S-shaped course drinking control method.

A novel approach to damage localisation based on bispectral analysis and neural network

  • Civera, M.;Fragonara, L. Zanotti;Surace, C.
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.669-682
    • /
    • 2017
  • The normalised version of bispectrum, the so-called bicoherence, has often proved a reliable method of damage detection on engineering applications. Indeed, higher-order spectral analysis (HOSA) has the advantage of being able to detect non-linearity in the structural dynamic response while being insensitive to ambient vibrations. Skewness in the response may be easily spotted and related to damage conditions, as the majority of common faults and cracks shows bilinear effects. The present study tries to extend the application of HOSA to damage localisation, resorting to a neural network based classification algorithm. In order to validate the approach, a non-linear finite element model of a 4-meters-long cantilever beam has been built. This model could be seen as a first generic concept of more complex structural systems, such as aircraft wings, wind turbine blades, etc. The main aim of the study is to train a Neural Network (NN) able to classify different damage locations, when fed with bispectra. These are computed using the dynamic response of the FE nonlinear model to random noise excitation.