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Abstract

The goal of this paper is to describe an advanced
method of the fault diagnois using Control Theory
with reference to a crack detection, a new way to lo-
calize the crack position under infulence of the plant
disturbance and white measurement noise on a rota-
ting shaft. As a first step, the shaft is physically mo-
delled with a finite element method as usual and the
dynamic mathematical model is derived from it using
the Hamilton - principle and in this way the system
is modelled by various subsystems. The equations of
motion with crack is established by adaption of the
local stiffness change through breathing and gaping
from the crack to the equation of motion with un-
damaged shaft. This is supposed to be regarded as
reference for the given system.

Based on the fictitious model of the time behaviour
induced from vibration phenomena measured at the
bearings, a nonlinear State Observer is designed in
order to detect the crack on the shaft. This is ele-
mentary NL- observer(EOB). Using the elementary
observer, an Estimator(Observer) Bank is establis-
hed and arranged at the certain position on the shaft.
In case a crack is found and its position is known, the
procedure for the estimation of the depth is going to
begin.

1 Introduction

In this paper, as an indicator for the existence of
a crack, the nonlinear dynamic effects, given rise by
the change of the stiffness coefficients due to the rota-
tion of the cracked shaft, is going to be investigated.
These effects related to the measurements on the bea-
rings, are one of the important clue to determinate
the existence of the crack on the rotating shaft. But
it is very difficult to set up the clear relation bet-
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ween crack and caused phenomena in the time do-
main operation. This is the main task in the area of
the crack problem too. As a classical method, there
are some simple ways to find the split on the shaft.
For example to analyse the vibration peak, acoustics
and to measure the oil temperature by the costdown
and by the transition of the resonance. These me-
thods are hardly to offer the solution to the loca-
lization clear relationships between phemomen and
stiffness. Here a new method based on the theory of
disturbance rejection control for the detection of the
crack, estimating the position with respect to con-
stant crack depth and the depth of a certain crack
respectively. First of all, the basic state observer is
established in the way to modify the given system
into extended system with a linear fictitious model
for the nonlinear system behaviour. In this conside-
ration, the effects of the extended system which may
be nonlinear, are interpreted as a internal or exter-
nal disturbance which is unknown at the initial stage.
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figure 1-1 : physical Model of the Rotor



The unknown nonlinear effects is going to be appro-
ximated by the additional time signals yielded by
elementary state observer. Because of using FEM
model, it is not necessary to calculate the relative
compliance of the crack. Normally the elementary
stiffness matrix for undamaged rotor is given in the
stage of the construction and the stiffness correspon-
ding to the crack is able to be calculated.

As an example the physical model, which is divided
into N(=7) finite sub-shafts is modelled. Every one
is called a subsystem. At both ends of the shaft there
exist dynamic of the bearings. They have a task of
system control. On the bearings at the left and right
side of the shaft the measurements are taking place.
It is assumed that the material properties are ho-
mogenous. The geometical data and other detailed
informations are given in appendix.

2 Equation of Motion

Assuming that there are only small deviation from
motion and without redundant coordinate, the sy-
stem including 3 harmonic unbalances in the 3rd, 4th
and 5th subsystems in the middle of the shaft

(My) §(t) + (Dag + Gy) 4(t) + K, q(t) =
fu(®) + fo(®) + Ls(4) n(g(®),t) (1)

can be accepted as linear system and 1t is able to be
discretized into N(=7) sub - finite systems and it’s
equation of motion with crack at some subsystem j
is described by,

ie=1,..,N &)
coon _ [ P

Jxlie) = [(ze 1) 9 + 1] G.1,..,N) ®
i = JryenJetn—1 (4)
i = Jryenjetn-—1 ®)

With i, jk, 1 and j the vector in explizit Form and
the equation of motion can be given as follows:

et D)o, g 41y = Liem)(3H) (6)
N jk(ie‘)iﬂ—l

i.=1 jkzjk(ie)

Kegji o)D)} = [ful®)e)ie=3,25)

[Medjy i) (#) + (De + Ge)djniny 1)+

D))=, .my+Ls(ng, ie)[n(gey(2), D=1, n)(7)

where the index g denotes the whole system and the
index e presents the elementary subsystem and with

o g(t),¢(t), g(t): displacement vector, velocity
vector and acceleration of the system.

e My, K, : mass matrix, stiffness matrix of unda-
maged section,

e D4y, Gy = —G; matrix of the damping and
gyroscopic matrix.

o gc(t), qe(t), ge(t): displacement vector, velocity
vector and acceleration of the elementary sub
systems. ¢.(t) € R" , n(=8) and nn(=32) are
degree of freedom of considered elementary sub
system and total system. The g.(t) consists of
‘Ie(t) = (zhyl;o:vheyﬁ xr;yryexryeyr): the indi-
ces | and r denote the left and right node and
Zr,Yr,0zr,0yr) are the coordinates at the sub
system.

o fu(t), f4(t), n(q(t),t) : vector of unbalance, gra-
vitation input vector and vector of the nonhinea-
rities caused by unexpected influence(crack)

e M., K. : mass matrix, stiffness matrix of unda-
maged secton,

e Dy, G. = ~GT, Ls(n, i, : matrix of the dam-
ping , gyroscopic effects and distribution vector
with regard to the crack at subshaft pumber i..

All system matrices are constant and the distribute
matrix is given as follows

i..thposition
N
000 ..., 000 , .-, 000
10

1
0o .., 0100 000

i..thposition

Ls(i,) =

—

(2,N)

From now on the index j will be left out with re-
spect to the whole dynamic system. It is nor-
mally convienient for further operation to write the
above equation via state space notation with z(t) =
[g@®)T, 4(t)T] inclusive the nonlinearties of the mo-
tion created by a crack and under assumption that
it concerns randum disturbance in plant with s(t).

i(t) = A 2(t)+B u(t)+ Nrnr(z(t)+ W s(t)(9)

The equation of the measurement into following form

y=C z(t) + wn(t) (10)
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where A is (N, x, N,) dimensional system matrix
which is responsible for the system dynamic with
N, = 2nn, u(t) denotes r -dimensional vector of the
excitation inputs due to gravitation and unbalances
and C presents (m, x N, )-dimensional measurement
matrix. W is the (N, x N,,) dimensional matrix and
s(t) presents the plant vector of noise. wy,, denotes
the white measurement noise. x(t)is Ny, -dimensional
state vector, and y(t) is m, -dimensional vector of
measurements respectively.

Here the vector ng(z(t)) characterize the n; -
dimensional vector of nonlinear functions due to the
crack. Ng is the input matrix of the nonlinearties
and the order of Ng is of (Nn,ny). It is presuppo-
sed that the matrices A, B, C, Ng and the the vector
u(t) and y(t) are already known. On the assumption
that the plant noise and measurement noise are un-
collated

Ews(t)] =0, E [wm(t)] =0, (11)
Ews(t) wh(®)] =0, (12)

E [wy(t) wl(r)] = Qs(1)s(t — 1), (13)
Q:() = Q7 () (14)

E [wn()w ()] = Rm(t)8(t — 1), (15)
Rn(t) = R (1) (16)

E [w,(t)27] = 0, E [wm(t)z] = 0 an

where the weighting matrix Q corresponding to the
plant and R regarding to the measurement should be
suitably chosen.

Now it remains to reconstruct the unknown non-
linear vector ng(z(¢),t) which mentions the distur-
bance force caused by crack. The basic idea is to get
the signals from ng(z(t)) approximated by a linear
fictitious model

nr(z(t),t) ~ Hv(t) (18)
o(t) = Vot) (19)
dimo(t) = s (20)

that describes the time behaviour of the nonlineari-
ties due to the apperance of the crack approximately
as follows:

nr(z(t),t) ~ fp(£(t)) = Hi(t) 21

where 9(¢) follows from(25, see below The matrices H
and V have to be chosen according to the technical
background considered. In this way the additional
forces created by crack are going to be reconstruced
through the estimation of disturbance vector v(t).

To make the signals A(&(t)) available, it needs

the elementary observer(EOB) to be designed.

" .

figure 1-2 : elementary observer: EOB

At first the given system(9) has to be extended with
the fictitious model(18) into extended model

e A, z(t) B,
| | 2()
w={c o]l (23)
\__?',__/ t;(t)

e

Here,Ng H couples the fictitiuous model(18,7) to the
whole system. To enable the successful estimates, it’s
obligatory to pay attention to the condition m, > ny.
i.e the number of the measurements must be at least
equal or greater than the modelled nonlinearities. In
the case the above requirements are satisfied, then
the elementary observer in terms of an identity ob-
server can be designed as follows;

[:@(t)]_[A—L,C NRH][ﬁ(t)]

ey | =1 -Le v [
Pt Ao 2(t)o
+[ : ] a(t) + [ - ]y(t) (29)
e PA
2(t)
i0=| ¢ o][m], (25)
\——8,_—/ %(t)

e

where matrices L, and L, are the gain matrix of the
observer and white noise vector related to the state



measurement respectively. The above equation(24)
means that the observer consists of a simulated mo-
del with a correction feedback of the estimation error
between real and simulated measurements. The ma-
trix A, has (N, + ny, Ny + ny) -dimension and re-
presents the dynamic behaviour of the elementary
observer. The asymptotic stability of the elementary
observer can be guaranteed by a suitable design of
the gain matrices L., L, which is possible under the
conditions of detectability or observabilty of the ex-
tended system(22, 23). The fictitious model of the
crack behaviours is able to be designed as follows,

1 0
H = [ 0 1] (26)

0 0
vV = [0 0] (27)
R ~ vi(t) (28)
N(R2,2()s) R va2(t) (29)

The observer gain matrices Lz, L, can be calculated
by pole assignment or by the Riccati equation

w
0= A+P+P AT_PCTR;IC P+

0
3 Estimator(Observer) Bank

for the  Localization of the
Crack

In above section it has been studied how to design
the elementary observer(EOB) for the detection at a
given local position. It means that a certain place
on the shaft is initially given as the position of a
crack. In the real running operation there is not any
information about the position of the crack, so the
elementary observer has to survey not only the assi-
gned local position but also any other place on the
shaft and give the signals whether a crack exist or
not. As it has been known, it is possible to detect
the crack assigned certain place on the shaft. In case
a crack appears at any subsystem out of the assigned
or located position in running time, it must be de-
tected as well. But in many cases it has been shown
that it is impossible or very difficult to estimate the
position of the crack at all subsystem on the shaft
with one EOB. Generally it depend on the number of
the subsystem, the number of observer(arrangement)
and depth of the carck. For the estimation of a crack
position a method based on Estimator Bank is pre-
sented. The main idea is to feel the related crack
forces from a certain local position to the arranged

Q[ wT,0](30)
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elementary observer. This is the main task in this
section.

3.1 Design of a Observer Bank

observer bank
u) y®

plant [>T o

T T > )

| e > L)

B = ek s p ST

w0 - %0 (0. AxO) ),
% - 0 (0. Aot }e
V) ~ 940 (X0, AEx(D))n

figure: 2-1, Estimator(Observer) Bank

Figure 2-1 shows the structure of the Observer Bank
considered. It consists of a few of elementary ob-
servers. The number of elementary observer de-
pends on the number of the subsystems modelled.
Every elementary observer which is distinguished
from the distribution matrix Ls(;,) gets the same in-
put(excitation) u(t) and the feed back of the measu-
rements and is going to be set up at suitable place on
the given system. For the appreciate arrangement of
the EOB, the distribution matrix on the analogy of
(8) has been applied. In this way the observer bank
is established with the EOB. To estimate the local
place of the crack, there are two steps. First of all,
the EOB must be observable to certain local in the
meaning of the asymptotical stability in the system.
The requirement has been satisfied by the criteria
from Hautus

My, — A —NR(LS(,-))H
Rank 0 ALy, -V
Ce. 0
= dim(z.(t)) + dim(v(t)) = Np +np(=s) (31)
This means that the EOB has to be cappable of esti-
mating the crack at it’s location, where EOB is si-



tuated on the given system.

Secondly the unknown crack position is to be found
by the EOB arranged in a certain local place with
the related crack forces resulting from the a crack.
To guarantee this the condition(31) is supposed to
be fulfiled. In this work two EOB are arranged at
the 2nd subsystem and 6th like this

Ls)(i = 2) = 1, otherweis Ls(z)(i) =0

Ls)(i = 30) = 1, otherweis Ls(g)(#) = 0. The equa-
tion of the observer bank with EOB A at the 2nd
subsystemn

bR Rl

" —
To A,

2(t)(2) 1. L:
90 ]+[ § ]ao+] I oo +om 62
N, et s, jorat’ ———
z(t)o
and EOB B at the 6th is descrived by

ial-( 5 "]
o(t)e) | —LC

Eo A,

be=bo L,

[500 ]+] 5 Jao+] 72 |or+ um 2
SV S ~—— .

o(t)o be=bo Lo

The weighting matrix Q and R have to be chosen
like eq. in [3].

4 Example
0.08 Beo. A; Ri. S. vas!s. 0.08 Beo. B; Ri. 5. Subsys,
0.06 . 4 0.06F-
o o
= oo 1 Eom -
Z &
0.021 [1X1 7] ExSE——— S
| PN S [
4] 0.1 0.2 03 o 0.1 02 0.3
[s] (s
0.08 Beo. A; Ri. 6. Sx?bsxs. 0.08 Beo.:B; Ri. 6. Subsys.
0.06} - '
g
é 0.04F 1
0.02}+

o:’

0.1 032 03
5] &
figure: 3-1, EOB A, B: crack in 1st and 2nd
Subsystem, #(5,1) = 0.135,
t(ri;2) = 0.15,t(5) = 0.03[s] Y coordinate: crack
forcee in N , X coordinate: time in fsec],i = 1,7; j=
1,2
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san A, D

0.1 02 03
[s}

Beo. B; Ri. 4. Subsys.

. figure: 3-2, EOB, A, B: crack in 3rd and 4th
Subsystem, t(ry = 0.15, ¢,y = 0.03[s] Y coordinate:
crack forcee in N , X coordinate : time in [sec] 1 =

2,6,)=3,4

The figures from 3-1 and 3-2 present the reults of
the theoretical investigation and shows the crack
forces at 1st, 2nd of node in vertical direction re-
spectively and their corrupted signals due to ran-
dum disturbance in plant. It means also to esti-
mate the local crack position under constant depth
with respect to crack forces. These forces related
from certain position of crack to EOB A and EOB
B are supposed to be interpreted as mechanical for-
ces due to the brathing and gaping from the Gash
model[1]. The nummerical value of the p, concerned
with the weighting matrix Q are of QGisi=i=1,...,32) =
10,Qijsi=j=33,...62) = 15, Qi jsi=j=63) = 2 * 10%,
Qi jii=j=64) = 10%% respectively. The factor p, of
the weighting matrix R is of 0.975 and diagR; ;) is
of 1. It has been noticed that the observer estimates
the signals very well. The external signal exists in
case of the oppend crack. On analogy of the system
model, the minimal and maximal values depend on
the depth if only the crack is situated at the position
where the EOB are located. Otherweise the position
of the crack plays a part in the values of the forces
regarding to the excited inputs as well. However, the
crack forces are clear indicator for the apperance of
a crack in operating time. The other figures which
have been left out, shows that EOB B which is arran-
ged at the right bearing, is not able to estimate the
crack in.1st subsystem. In the simulation the given
depth isrof 2 mm and the time of appearance of the
crack makes 0.2 sec.



5 Summary and Conclusions

Using FEM the mathematical model of the rotating
shaft including a crack has been presented. Based
on the mathematical model including plant randum
disturbance, the elementary observer and an obser-
ver bank have been developed. With this observer
bank the task of the crack detection and localization
have been done. The above method give a clear rela-
tion between the damaged shaft by a crack and the
caused phenomena, in vibration by means of the mea-
surement at both bearings. Successful theoretical re-
sults have been given. The forces in the results are
the internal forces, which have been reconstructed as
disturbance forces created by the crack. It has been
theoretically shown, that it is possible to localize a
crack with the very small depth of 1 mm under the
randum plant noise. The measurement regarded as
clean. By estimating the depth, the simulation has
been succeeded in ascertaning the depth of 12 mm.
The suggested methods are very significant not only
for the further theoretical research and development
but also for the transfer in experiments.

crack depth has been mentioned.
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7 Appendix

Using the abbreviation i =i —jp + 1,57 =j—jr +1
the sum of the matrices with accordance to equations

(2) and (3) can be descrived as follows;

N J(Ge=1) 3+1 je4n—1

MP =3 Y (Y Me(ii,jj))]
(i)

i.=1 Jxk=1 $,3=5
+M(0dime,dime) (34)

N |Ge=1) $+1 jrtn-1

KD ,G=2 X (X Ke(z'z',m)]
(ie)

fo=1 jr=1 i5=ix
+K€dime,dime) (35)
N |(ie=1) 341 jatn-1
=31 3 (X Guliiii)
fe=1 =1 $,j=Jx G)
+G?dime,dime) (36)
N [(Ge=1) 241 jp4n-1
D =31 3 (X Deii,ii)
ie=1]  Jx=1 ij=je Ge)
+D(odime,dime) (37)
The matrices used in equation(9) are follows
A=
0 I(nn)
(38)
R —(M,) 'K, —(M,)~(Dag + Gy) 3
(64,64)

The index i denotes the number of the subsystem.
The vector of the order of the excitation and the
matrix of nonlinearites,

0 0
i(t) = I: = :| ,NR(LS(,-)) = l: v } (39)
M7 fe ~Mg" Lsg) (64,1)

is of (64 x 1). where the vector of the excitation con-
sists of graviation and harmonic unbalnce , is presen-
ted by

(40)
(41)

Je = Rgivii=1,..N) + f(u,ic=3,4,5)
Jigi2) = fg30) = 0,
fig6) = Figin0) = fignay =

f(g;lS) = f(g;22) = f(g;26) = —mg, (42)
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The order of the f, is of (32 x 1) and fy is of (32 x
1).

f(u;l?) = f(u;21) = f(u;25) =

—em Q2 m(ez) sin(Qt + §) (43)
f(u;18) = f(u;22) = f(u;ZG) =
em 2 M(ez) cos(2t + B) (44)

where angle of the phase:# =0, length of the subsy-
stem of rotor el = 2m, Diameter of the subsystem
of rotor makes ed = 0.25m. The mass of eleme-
tal subsystem: m = 7 el p‘-g%’, The density is of
p= 78605,95 excentricity: e,,= 0.0001, mass of the
excentricity: m(.;)= 3 m respectively. The modulus
E i is of 2.1 % 10°N/mm?. The stiffness of bearing:
Kpeaing = 15 % 10°N/mm?. The measurement ma-
trix of order(4 x 64), C(i=1,...4,j=1,....64) = 0 , except
Cay = Cz,2) = C(29,29) = C(30,30) = 1. The num-
ber of the nonlinearities ny are of 1 and the number
of the measurements m, makes 4. The elementar
matrices K., M. and D; which depends on the geo-
metry, are given inf4, 5, 6].
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