• Title/Summary/Keyword: cox3

Search Result 1,620, Processing Time 0.033 seconds

Posttranscriptional and posttranslational determinants of cyclooxygenase expression

  • Mbonye, Uri R.;Song, In-Seok
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.552-560
    • /
    • 2009
  • Cyclooxygenases (COX-1 and COX-2) are ER-resident proteins that catalyze the committed step in prostanoid synthesis. COX-1 is constitutively expressed in many mammalian cells, whereas COX-2 is usually expressed inducibly and transiently. Abnormal expression of COX-2 has been implicated in the pathogenesis of chronic inflammation and various cancers; therefore, it is subject to tight and complex regulation. Differences in regulation of the COX enzymes at the posttranscriptional and posttranslational levels also contribute significantly to their distinct patterns of expression. Rapid degradation of COX-2 mRNA has been attributed to AU-rich elements (AREs) at its 3’UTR. Recently, microRNAs that can selectively repress COX-2 protein synthesis have been identified. The mature forms of these COX proteins are very similar in structure except that COX-2 has a unique 19-amino acid (19-aa) segment located near the C-terminus. This C-terminal 19-aa cassette plays an important role in mediation of the entry of COX-2 into the ER-associated degradation (ERAD) system, which transports ER proteins to the cytoplasm for degradation by the 26S proteasome. A second pathway for COX-2 protein degradation is initiated after the enzyme undergoes suicide inactivation following cyclooxygenase catalysis. Here, we discuss these molecular determinants of COX-2 expression in detail.

Inhibitory Effects of Epigallocatechin-3-Gallate on Microsomal Cyclooxygenase-1 Activity in Platelets

  • Lee, Dong-Ha;Kim, Yun-Jung;Kim, Hyun-Hong;Cho, Hyun-Jeong;Ryu, Jin-Hyeob;Rhee, Man Hee;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.54-59
    • /
    • 2013
  • In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea catechins from green tea leaves, on activities of cyclooxygenase (COX)-1 and thromboxane synthase (TXAS), thromboxane $A_2$ ($TXA_2$) production associated microsomal enzymes. EGCG inhibited COX-1 activity to 96.9%, and TXAS activity to 20% in platelet microsomal fraction having cytochrome c reductase (an endoplasmic reticulum marker enzyme) activity and expressing COX-1 (70 kDa) and TXAS (58 kDa) proteins. The inhibitory ratio of COX-1 to TXAS by EGCG was 4.8. These results mean that EGCG has a stronger selectivity in COX-1 inhibition than TXAS inhibition. In special, a nonsteroid anti-inflammatory drug aspirin, a COX-1 inhibitor, inhibited COX-1 activity by 11.3% at the same concentration ($50{\mu}M$) as EGCG that inhibited COX-1 activity to 96.9% as compared with that of control. This suggests that EGCG has a stronger effect than that of aspirin on inhibition of COX-1 activity. Accordingly, we demonstrate that EGCG might be used as a crucial tool for a strong negative regulator of COX-1/$TXA_2$ signaling pathway to inhibit thrombotic disease-associated platelet aggregation.

Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells

  • Kim, Shi-Yeon;Min, Kyoung-Jin;Joe, Eun-Hye;Min, Do-Sik
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2004.10a
    • /
    • pp.74-79
    • /
    • 2004
  • Little is known about the effect of epigallocatechin-3 gallate (ESCG), a major constituent of green tea, on the expression of cyclooxygenase (COX)-2. Here, we studied the role of phospholipase D (PLD) isozymes in EGCG-induced COX-2 expression. Stimulation of human astrocytoma cells (U87) with EGCG induced formation of phosphatidylbutanol, a specific product of PLD activity, and synthesis of COX-2protein and its product, prostaglandin $E_2$ ($PGE_2$). Pretreatment of cells with 1-butanol, but not 3-butanol, suppressed EGCG-induced COX-2 expression and $PGE_2$ synthesis. Furthermore, evidence that PLD was involved in EGCG-induced COX-2 expression w3s provided by the observations that COX-2 expression was stimulated by over-expression of PLD1 or PLD2 isozymes and treatment with phosphatidic acid(PA), and that prevention of PA dephosphorylation by 1-propranolol significantly potentiated COX-2expression Induced by EGCG. EGCG induced activation of p38 mitogen-activated protein kinase (p38MAPK), and specific Inhibition of p38 MAPK dramatically abolished EGCG-Induced PLD activation, COX-2 expression, and $PGE_2$ formation. Moreover, protein kinase C (PKC) inhibition suppressed EGCG-induced p38 MAPK activation, COX-2 expression, and $PGE_2$ accumulation. The same pathways as those obtained in the astrocytoma cells were active in primary rat astrocytes, suggesting the relevance of the findings. Collectively, our results demonstrate for the first time that PLD isozymes mediate EGCG-induced COX-2 expression through PKC and p38 in immortalized astroglial line and normal astrocyte cells.

  • PDF

Sophoricoside analogs inhibit COX isozymes but not iNOS and TNF in LPS-stimulated macrophages Raw264.7

  • Kim, Byung-Hak;Min, Kyung-Rak;Kim, Young-Soo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.320.2-320.2
    • /
    • 2002
  • Macrophages activated by lipopolysaccharide (LPS) are known to induce several proinflammatory proteins including COX-2. iNOS and TNF which produce chemical mediators involved in inflammatory response. Sophoricoside and its analogs (genistin, genistein and orobol) from Sophora japonica (Leguminosae) showed differential inhibitory effects on COX-1 and 2 activities. Sophoricoside and genistin shwoed IC50 values of 4 uM and 6 uM on COX-2 activity and of 1,497 uM and 135 uM on COX-1 activity, respectively. Genistein and orobol showed IC50 values of 3 uM on COX-2 activity and of 28 uM and 18 uM on COX-1 activity. respectively. Therefore. the legume isoflavonoids to be selective COX-2 inhibitors. However. sophoricoside and its analogs did not show inhibitory effects of COX-2, iNos and TNF transcripts. which were identified by the RT-PCR.

  • PDF

Antiinflammatory Evaluation and Synthesis of Benzothiazine Derivatives as Cyclooxygenase-2 Inhibitor (Cyclooxygenase-2 저해제로서의 benzothiazine 유도체 합성과 항염작용 평가)

  • 신혜순;박명숙;권순경
    • YAKHAK HOEJI
    • /
    • v.44 no.3
    • /
    • pp.272-278
    • /
    • 2000
  • The antiinflammatory mechanism of NSAIDs is attributed to the reduction of prostaglandin synthesis by the direct inhibition of cyclooxygenase. Inhibition of prostaglandin production in organs such as stomach and kidney can result in gastric lesions, nephrotoxicity and increased bleeding. In this study, newly designed COX-2 inhibitors, synthesized 1,2-benzothiazine derivatives, were screened in vitro for selectivity of COX-1 and COX-2 inhibition properties. Lead compounds in the structure-activity relationship were studied to synthesize new highly selective COX-2 inhibitors.13 determine inhibitory effect of COX-2, synthesized 1,2-benzothiazine derivatives were screened with accumulation of prostaglandin by lipopolysaccharide (LPS) in aspirin-treated macrophages and murine macropharge cell. Some of synthesized 1,2-benzothiazine derivatives were shown to be effective as selective COX-2 inhibitory activity. Others exhibited a preferential inhibition of COX-2, although some COX-1 inhibitory activity was still present. As a conclusion, simple monomer derivatives were more active than dimer derivatives. Substitution of halogen (Br, C1) on the benzothiazine nucleus slightly enhanced inhibition activity.

  • PDF

CJ-11668, A new selective and potent COX-2 inhibitor, reduces inflamation, fever and pain in animal models

  • Kim, Seong-Woo;Park, Hyun-Jung;Kim, Young-Gi;Yeon, Kyu-Jeong;Ryu, Hyung-Chul;Park, Sang-Wook;Kim, Jong-Hoon;Ko, Dong-Hyun;Chae, Myeong-Yun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.94.2-94.2
    • /
    • 2003
  • CJ-11668 is a new potent and selective COX-2 inhibitor. CJ-11668 showed COX-2 inhibition (IC50) of 65nM and selectivity ratio (COX-l/COX-2) of 770 in the cell based assay. In the human whole blood assay, CJ-11668 showed COX-2 inhibition (IC50) of 370nM and selectivity ratio (COX-l/COX-2), 135. The treatment of CJ-11668 (5 mg/kg, p.o) produced a significant inhibition (35%) of inflamed rat paw volume in the carrageenan-induced acute inflammation. CJ-11668 also suppressed the PGE2 level (69% inhibition, 1 mg/kg, p.o) in the zymosan-induced mouse air pouch model after 3 hrs. (omitted)

  • PDF

A Phylogenetic Study of Staurastrum Complex (Chlorophyta) Inferred from coxIII Sequence Analysis (coxIII 유전자 염기서열 분석에 의한 팔장고말 COMPLEX(녹조식물문)의 계통 연구)

  • Moon, Byeong-Ryeol;Lee, Ok-Min
    • ALGAE
    • /
    • v.19 no.3
    • /
    • pp.153-160
    • /
    • 2004
  • The intergeneric relationship of Staurastrum complex including genus Arthrodesmus and Xanthidium was studied on the basis of mitochondrial coxⅢ sequence variation. Teiling's suggestion that Staurodesmus was an independent genus apart from genus Staurastrum, Arthrodesmus and Cosmarium was also reevaluated. The phylogeny inferred from coxⅢ gene was not consistent with morphological characteristics of Staurastrum complex. Genus Staurastrum was closely related to genus Xanthidium in the phylogenetic analysis of coxⅢ, but distant to genus Staurodesmus. The taxonomic treatment of genus Staurodesmus as an independent entity could not be determined, because Staurodesmus did not firm a monophyletic Glade. Therefore, genus Staurodesmus could not be treated as an independent genus as Prescott et al. (1982) claimed.

A Phylogenetic Significance of Several Species from Genus Cosmarium (Chlorophyta) of Korea Based on Mitochondrial coxIII Gene Sequences (미토콘드리아 coxIII 유전자 염기서열에 의한 수 종의 한국산 장고말속 식물(녹조식물문)의 계통분류학적 유의성)

  • Mun, Byeong-Ryeol;Lee, Ok-Min
    • ALGAE
    • /
    • v.18 no.3
    • /
    • pp.199-205
    • /
    • 2003
  • It has been considered that genus Cosmarium including Staurastrum had the problems in grouping by morphological characters. Sequence data for the Cytochrome Oxidase subunit III (coxIII) were employed to compare with taxa of two divisions of this genus, with sections in each, for evaluating the taxonomic stability of these morphological characters. The division and section systems were not coincided with the phylogeny inferred from coxIII sequences, as the previous reports from us using nuclear rDNA ITS and chloroplast rbcL sequence comparisons in this genus. Two taxa of Staurastrum were not placed within a same clade each other, and one taxon of these was grouped in Arthrodesmus clade. Two genera, Cosmarium and Staurastrum, cannot be regarded as monophyletic from this result. Mitochondrial coxIII gene was considered as a useful phylogenetic tool to evaluate evolutionary relationships of desmids as in the case of land plants.

The Effects of Cyclooxygenase-2(COX-2) Inhibitor on COX-2 and Prostaglandin E2 Expression in Ovalbumin Induced Early Phase Bronchoconstriction of Rats (Ovalbumin으로 유발된 백서의 즉시형 기관지 수축 반응에서 Cyclooxygenase-2(COX-2) 발현 양상 및 혈중 프로스타글란딘 E2 농도와 COX-2 억제제의 효과)

  • Lee, Sung-Yong;Lee, Sin-Hyung;Jung, Ki-Hwan;Kim, Byung-Gyu;Jung, Hae-Chul;Kim, Kyung-Kyu;Kwon, Young-Hwan;Kim, Ja-Hyeong;Lee, Ju-Han;Lee, Sang-Youb;Cho, Jae-Yoen;Shim, Jae-Joeng;In, Kwang-Ho;Yoo, Se-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.2
    • /
    • pp.191-202
    • /
    • 2000
  • Background: Bronchial asthma is characterized by airway hyperresponsiveness(BHR) and inflammation. The cyclooxygenase(COX) is believed to be one of the important enzymes in these inflammatory reactions. Recently, the COX was divided into two isoforms, COX1 and COX2. COX2 is induced by lipopolysaccharide and some cytokines at the inflammation site. Prostaglandin E2(PGE2), produced from COX2, may affect airway inflammation. The purpose of this study is to evaluate the effect of COX2 inhibitor on COX2 expression, plasma PGE2, airway resistance and histologic finding in an animal asthma model. Methods : Sprague-Dawley rats were divided into 3 groups. The normal control group did not receive any treatment, but the asthma control group was sensitized by ovalbumin but not treated with the COX2 inhibitor(nimesulide, Mesulid$^{(R)}$). The treatment group was sensitized and treated with nimesulide. Specific airway resistance(sRaw) before and after nimesulide ingestion was investigated. The PGE2 level in the plasma was examined and COX2 immunogold-silver stain on lung tissue was performed. Results: sRaw and eosionophilic infiltration on airway, which increased in the asthma control group, was compared to normal control(p=0.014). However, there was no difference in eosinophilic infiltration between asthma control and treatment groups(p=0.408) and no difference in COX2 expression on bronchiolar epithelium among the three groups. Plasma PGE2 levels were not statically different among the three groups. Conclusion: The role of COX2 in the allergen-induced BHR was not significant The effect of nimesulide was not observed on BHR, COX2 expression, and plasma PGE2 level. Therefore, COX2 may not be a major substance of allergic asthma.

  • PDF

COX-inhibitors down-regulate TCDD-induced cyp1a1 activity in C57BL/6 mouse and Hepa- 1 cells.

  • Bang-Sylie;Cho, Min-Jung;Sheen, Yhun-Yhong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.292.1-292.1
    • /
    • 2002
  • In order to understand the mechanism of action of TCDD. we have examined the effect of COX-inhibitors on cypla1 activity. We observed the effect of COX-inhibitor on EROD activity in C57BL/6 mouse in vovo. And we also evaluated the effect of COX-inhibitors on cypla1 mRNA. mouse cyplal promoter activity and EROD activity in Hepa cell. When Aspirin were pretreated with 3MC in vivo, the EROD activity that was stimulated by 3MC was inhibited. (omitted)

  • PDF