• Title/Summary/Keyword: cover structure

Search Result 695, Processing Time 0.029 seconds

Land Use Changes and Climate Patterns in Southeast Korea (우리나라 동남부 지역의 토지 이용과 기후 패턴 변화 분석)

  • Park, Sun-Yurp;Tak, Han-Myeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.47-64
    • /
    • 2013
  • Landscape structure changes over the past three decades were determined with land use and land cover(LULC) maps, and their relationships with mean air temperature time series were the analyzed for the Busan metropolitan area and South Kyeongsang Province, Korea. The geometric structures of the LULC data were quantitatively represented based on FRAGSTATS, a spatial pattern analysis program for quantifying landscape structure. FRAGSTATS-derived landscape metrics confirmed that there were major changes in LULC and landscape fragmentation in the region. Meteorological observation records showed that mean air temperature had increased from $14.1^{\circ}C$ in the 1990's to $14.8^{\circ}C$ in the 2000's in Busan. For South Kyeongsang Province, they increased from $13.2^{\circ}C$ to $13.9^{\circ}C$ during the same time period. These long-term temperature changes are correlated with typical spatial pattern changes of LULC in the southeastern region of the country. Spatial metrics analysis showed that urban area expanded from 9.7% to 26.8% of Busan while forest and agricultural land decreased by 9.6% and 14.9%, respectively over the past thirty years. The significant urbanization are tightly associated with deforestation, removal of agricultural land, and fast temperature increases since the 1990's. The urban area of South Kyeongsang Province rapidly increased, and it became 12 times as large as it was. The degree of temperature increases differed among three different sub-regions. The temperature increasing rate was lowest in the coastal region while the colder mountainous region had the highest figure.

Effects of Habitat Disturbance on Fish Community Structure in a Gravel-Bed Stream, Korea (자갈하천에서 서식처 교란이 어류 군집구조에 미치는 영향)

  • Kim, Seog Hyun;Lee, Wan-Ok;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.49-60
    • /
    • 2014
  • Fish assemblages play an integral role in stream ecosystem and are influenced by stream environmental conditions and habitat disturbances. Fish community structures and habitat parameters of U.S. EPA rapid bio-assessment protocol were surveyed to investigate the effect of stream environment and habitat disturbance on fish communities at 13 study sites in the Gapyeong Stream, a typical gravel-bed stream. Principal component analysis (PCA) based on data from habitat assessment at each study site indicated that the study sites were differentiated by habitat parameters such as embeddedness, velocity/depth regime and sediment deposition, which were related with bed slope. A total of 46 species belonging to 12 families were collected in the Gapyeong Stream. A dominant species was Zacco koreanus, subdominant species was Z. platypus. Hierarchical cluster analysis based on species abundance classified fish communities into the three main groups along the stream longitudinal change. Non-metric multidimensional scaling (NMDS) portrayed that fish community structures were related to major habitat parameters, i.e., epifaunal substrate/available cover, embeddedness, velocity/depth regime, sediment deposition, channel alternation and frequency of riffles. These results suggested that fish community structures were primary affected by the longitudinal environmental changes, and those were modified by habitat disturbance in the Gapyeong Stream, a gravel-bed stream.

Structure and Understory Species Diversity of Pinus parviflora - Tsuga sieboldii Forest in Ulleung Island (울릉도 섬잣나무-솔송나무림의 구조 및 하층식생의 종 다양성)

  • Cho, Yong Chan;Hong, Jin Ki;Cho, Hyun Je;Bae, Kwan Ho;Kim, Jun Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • Vegetation structure, composition and diversity were quantified for 10 samples ($10m{\times}10m$) representing woody vegetation and for 30 samples ($1m {\times}3m$) representing understory vegetation in Pinus parviflora and Tsuga sieboldii forest of Taeharyeong, Ulleung-gun (Gyeongsangbuk-do). P. parviflora was limitedly advanced to sapling layer from seedling stage, and based on Mantel tests, composition of canopy layer was not established in ground woody vegetation. Non-metric multidimensional scaling revealed influence of biotic and abiotic factors in species composition of woody and understory vegetation. In the result of multiple regression model, abundance of P. parviflora (density and breast height area) and percent cover of woody debris were significant predict variables for understory diversity. These results suggest that relatively large disturbance is required for regeneration of P. parviflora and T. sieboldii forest, and control of expansion of monocultural understory species that monopolize resources such as Carex blepharicarpa and Maianthemum dilatatum, is necessary for maintenance of diversity.

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

Behavior of wall and nearby tunnel due to deformation of strut of braced wall using laboratory model test (실내모형시험을 통한 흙막이벽체 버팀대 변형에 따른 흙막이벽체 및 인접터널의 거동)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.593-608
    • /
    • 2018
  • If a problem occurs in the strut during the construction of the braced wall, they may cause excessive deformation of the braced wall. Therefore, in this study, the behavior of the braced wall and existing tunnel adjacent to excavation were investigated assuming that the support function of strut is lost during construction process. For this purpose, a series of model test was performed. As a result of the study, the earth pressure in the ground behind wall was rearranged due to the deformation of the braced wall, and the ground displacements caused the deformation of adjacent tunnels. When the struts located on the nearest side wall from the tunnel were removed, the deformation of the braced wall and the tunnel deformation were the largest. The magnitude of transferred earth pressure depended on the location of tunnel. The increase of the cover depth of tunnel from 0.65D to 2.65D caused the increase of the earth pressure by 25.6%. As the distance between braced wall and tunnel was increased from 0.5D to 1.0D, the transferred earth pressure increased by 16% on average. Horizontal displacements of braced wall by the removal of the strut tended to concentrate around the removed struts, and the horizontal displacement increased as the strut removal position is lowered. The tunnel displacement was maximum, when the cover depth of tunnel was 1.15D and the horizontal distance between braced wall and the side of tunnel was 0.5D. The minimal displacement occurred, when the cover depth of tunnel was 2.65D and the horizontal distance between braced wall and the side of tunnel was 1.0D. The difference between the maximum displacement and the minimum displacement was about 2 times, and the displacement was considered to be the largest when it was in the range of 1.15D to 1.65D and the horizontal distance of 0.5D.

Experimental study on the ground subsidence due to the excavation of a shallow tunnel (경사지반에서 얕은터널의 굴착에 따른 지표침하에 대한 실험적 연구)

  • Park, Chan Hyuk;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.761-778
    • /
    • 2017
  • The need of the underground space for the infrastructures in urban area is increasing, and especially the demand for shallow tunnels increased drastically. It is very important that the shallow tunnel in the urban area should fulfill not only its own safety conditions but also the safety condition for the adjacent structures and the surrounding sub-structure. Most of the studies on the behavior of shallow tunnels concentrated only on their behaviors due to the local deformation of the tunnel, such as tunnel crown or tunnel sidewall. However, few studies have been performed for the behavior of the shallow tunnel due to the deformation of the entire tunnel. Therefore, in this study the behavior of the surrounding ground and the stability caused by deformation of the whole tunnel were studied. For that purpose, model tests were performed for the various ground surface slopes and the cover depth of the tunnel. The model tunnel (width 300 mm, height 200 mm) could be simulationally deformed in the vertical and horizontal direction. The model ground was built by using carbon rods of three types (4 mm, 6 mm, 8 mm), in various surface slopes and cover depth of the tunnel. The subsidence of ground surface, the load on the tunnel crown and the sidewall, and the transferred load near tunnel were measured. As results, the ground surface subsided above the tunnel, and its amount decreased as the distance from the tunnel increased. The influence of a tunnel ceased in a certain distance from the tunnel. At the inclined ground surface, the wider subsidence has been occurred. The loads on the crown and the sidewall were clearly visible, but there was no effect of the surface slope at a certain depth. The load transfer on the adjacent ground was larger when the cover depth (on the horizontal surface) was lager. The higher the level (on the inclined surface), the wider and smaller it appeared. On the shallow tunnel under inclined surface, the transfer of the ambient load on the tunnel sidewall (low side) was clearly visible.

Determination of Stream Reach for River Environment Assessment System Using Satellite Image (위성영상을 활용한 하천환경 평가 세구간 설정)

  • Kang, Woochul;Choe, Hun;Jang, Eun-kyung;Ko, Dongwoo;Kang, Joongu;Yeo, Hongkoo
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.179-193
    • /
    • 2021
  • This study examines the use of satellite images for river classification and determination of stream reach, which is the first priority in the river environment assessment system. In the river environment assessment system used in South Korea, it is proposed to set a stream reach by using 10 or 25 times the width of the river based on the result of river classification. First, river classification for the main stream section of Cheongmi stream was performed using various river-related data. The maximum likelihood method was applied for land cover classification. In this study, Sentinel-2 satellite imagery, which is an open data technology with a resolution of 10 m, was used. A total of four satellite images from 2018 was used to consider various flow conditions: February 2 (daily discharge = 2.39 m3/s), May 23 (daily discharge = 15.51 m3/s), June 2 (daily discharge = 3.88 m3/s), and July 7 (daily discharge = 33.61 m3/s). The river widths were estimated from the result of land cover classification to determine stream reach. The results of the assessment reach classification were evaluated using indicators of stream physical environments, including pool diversity, channel sinuosity, and river crossing shape and structure. It is concluded that appropriate flow conditions need to be considered when using satellite images to set up assessment segments for the river environment assessment system.

A Study on the Influence of 8rand Image Consistency towards Brand Extension (상표이미지 일치가 상표확장 태도에 미치는 영향 연구 -인지도가 높은 여성의류상표를 중심으로-)

  • 임숙자;이지형
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.6
    • /
    • pp.959-969
    • /
    • 1997
  • This research is intended to help the development of new products and marketing strategies studying consumers' knowledge level and attitude towards original brand and the extension attitude related to the brand image. The detailed purposes of this study are as follow: First, it is to measure consumers' knowledge and attitude towards original brand. Second, it is to clarify the dimensions of the image about the original brand and extended brand product which is perceived by the consumer. Third, it is to meassure image consistency and product similarity between the original brand and extended product. The sample group consisted of female college students 393 in Seoul. Stratified sampling, based on major and grade of sturients and the structure of the college they were attending was used as sampling method. Questionnaires, which were selected from literature and proceeding researches published in Korea and abroad, were modified for this study, SAS Package was used for data analysis. The results observed in this study were as follow: 1. Consumers' knowledge level about original brand showed high among students majoring in clothing-related subjects and their general attitude proved to be positive. 2. Image factors of original brand were classified to dignity factor, personality/modernity factor, femininity factor, and ornamentation factor. Lipstick is considered to have high image consistency and product similarity. 3. Comparing the attitude before and after extension, extension to lipstick which showed high image consistency and product similarity received more positive reactions than one to bed cover sheet. 4. It was founded that although knowledge and attitude towards original brand with image consistency had no influence on the extension attitude, knowledge and attitude without image consistency influence the extension attitude.

  • PDF

Design of Multi-Band Internal Antenna for Handset Applications Including Media-FLO Band (미디어플로대역을 포함하는 단말기용 다중 대역 내장형 안테나의 설계)

  • Lee, Hyun-Kyu;Lee, Byung-Je
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.48-55
    • /
    • 2008
  • This paper presents a design of a multi-band infernal antenna for mobile handsets which can cover the major mobile services such as WiBro/WiMAX mobile internet services and Media-FLO/S-DMB services. Using wideband monopole antenna structure, the proposed antenna obtains the wide bandwidth characteristic at high Sequency band to be applicable for new mobile services. Stacking meandered radiator on the wideband monopole radiator and obtaining the different current path and lenga on these stacked radiators, overall antenna volume is effectively reduced. The measured bandwidths (VSWR<3) of the proposed antenna is 270 MHz and 2032 MHz at low and high band, respectively. This antenna can effectively covers major wireless communication bands including Media-FLO, CDMA, GSM, GPS, DCS, PCS, UMTS, WiBro, WiMAX, and S-DMB.

  • PDF

Interfacial mechanical behaviors of RC beams strengthened with FRP

  • Deng, Jiangdong;Liu, Airong;Huang, Peiyan;Zheng, Xiaohong
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.577-596
    • /
    • 2016
  • FRP-concrete interfacial mechanical properties determine the strengthening effect of RC beams strengthened with FRP. In this paper, the model experiments were carried out with eight specimens to study the failure modes and the strengthening effect of RC beams strengthened with FRP. Then a theoretical model based on interfacial performances was proposed and interfacial mechanical behaviors were studied. Finite element analysis confirmed the theoretical results. The results showed that RC beams strengthened with FRP had three loading stages and that the FRP strengthening effects were mainly exerted in the Stage III after the yielding of steel bars, including the improvement of the bearing capacity, the decreased ultimate deformation due to the sudden failure of FRP and the improvement of stiffness in this stage. The mechanical formulae of the interfacial shear stress and FRP stress were established and the key influence factors included FRP length, interfacial bond-slip parameter, FRP thickness, etc. According to the theoretical analysis and experimental data, the calculation methods of interfacial shear stress at FRP end and FRP strain at midspan were proposed. When FRP bonding length was shorter, interfacial shear stress at FRP end was larger that led to concrete cover peeling failure. When FRP was longer, FRP reached the ultimate strain and the fracture failure of FRP occurred. The theoretical results were well consistent with the experimental data.