• Title/Summary/Keyword: cover failure time

Search Result 42, Processing Time 0.026 seconds

Behaviour of ultra-high strength concrete encased steel columns subject to ISO-834 fire

  • Du, Yong;Zhou, Huikai;Jiang, Jian;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.121-139
    • /
    • 2021
  • Ultra-high strength concrete (UHSC) encased steel columns are receiving growing interest in high-rise buildings owing to their economic and architectural advantages. However, UHSC encased steel columns are not covered by the modern fire safety design code. A total of 14 fire tests are conducted on UHSC (120 MPa) encased steel columns under constant axial loads and exposed to ISO-834 standard fire. The effect of load ratio, slenderness, stirrup spacing, cross-section size and concrete cover to core steel on the fire resistance and failure mode of the specimens are investigated. The applicability of the tabulated method in EC4 (EN 1994-1-2-2005) and regression formula in Chinese code (DBJ/T 15-81-2011) to fire resistance of UHSC encased steel columns are checked. Generally, the test results reveal that the vertical displacement-heating time curves can be divided into two phases, i.e. thermal expansion and shortening to failure. It is found that the fire resistance of column specimens increases with the increase of the cross-section size and concrete cover to core steel, but decreases with the increase of the load ratio and slenderness. The EC4 method overestimates the fire resistance up to 186% (220 min), while the Chinese code underestimates it down to 49%. The Chinese code has a better agreement than EC4 with the test results since the former considers the effect of the load ratio, slenderness, cross section size directly in its empirical formula. To estimate the fire resistance precisely can improve the economy of structural fire design of ultra-high strength concrete encased steel columns.

Modification and Testing to Prevent the Resonance in a Finger-type Low Pressure Turbine Blade (저압 터빈용 Finger 형 블레이드의 공진 방지를 위한 개선 및 시험)

  • Ha, Hyun-Cheon;Lee, Dong-Jin;Ryu, Seok-Ju;Chung, Hee-Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.612-617
    • /
    • 2000
  • This paper describes the experience gained from the treatments for prevention of blade failure occurred in the low-pressure turbine. Some cracks due to high cycle fatigue were found at the blades in low-pressure turbines after long time operation. Such failure was mainly caused by the resonance of the blade with the vane passing frequency excitation. If a natural frequency of the blade exists near the excitation frequency, a resonant vibration can occur and leads to a large amount of stress which may cause fatigue failures in turbine blades. To avoid the resonance of the blade, some modifications have been performed and full-scaled mockup testing has been done to confirm the verification for modification. Test result shows that enlarging the span cover is very useful to change the natural frequency of the grouped blades effectively.

  • PDF

Risk-based optimum repair planning of corroded reinforced concrete structures

  • Nepal, Jaya;Chen, Hua-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Civil engineering infrastructure is aging and requires cost-effective maintenance strategies to enable infrastructure systems operate reliably and sustainably. This paper presents an approach for determining risk-cost balanced repair strategy of corrosion damaged reinforced concrete structures with consideration of uncertainty in structural resistance deterioration. On the basis of analytical models of cover concrete cracking evolution and bond strength degradation due to reinforcement corrosion, the effect of reinforcement corrosion on residual load carrying capacity of corroded reinforced concrete structures is investigated. A stochastic deterioration model based on gamma process is adopted to evaluate the probability of failure of structural bearing capacity over the lifetime. Optimal repair planning and maintenance strategies during the service life are determined by balancing the cost for maintenance and the risk of structural failure. The method proposed in this study is then demonstrated by numerical investigations for a concrete structure subjected to reinforcement corrosion. The obtained results show that the proposed method can provide a risk cost optimised repair schedule during the service life of corroded concrete structures.

Analysis Technique on Time-dependent PDF (Probability of Durability Failure) Considering Equivalent Surface Chloride Content (균등 표면 염화물량을 고려한 시간 의존적 내구적 파괴확률 해석기법)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.46-52
    • /
    • 2017
  • Recently durability design based on deterministic or probabilistic method has been attempted since service life evaluation in RC(Reinforced Concrete) structure exposed to chloride attack is important. The deterministic durability design contains a reasonable method with time effect on surface chloride content and diffusion coefficient, however the probabilistic design procedure has no consideration of time effect on both. In the paper, a technique on PDF(Probability of Durability Failure) evaluation is proposed considering time effect on diffusion and surface chloride content through equivalent surface chloride content which has same induced chloride content within a given period and cover depth. With varying period to built-up from 10 to 30 years and maximum surface chloride content from $5.0kg/m^3$ to $10.0kg/m^3$, the changing PDF and the related service life are derived. The proposed method can be reasonably applied to actual durability design with preventing conservative design parameters and considering the same analysis conditions of the deterministic method.

LMI Approach of Reliable $\textit{H}_{\infty}$ Control (신뢰 $\textit{H}_{\infty}$ 제어의 선형 행렬 부등식 방법)

  • Kim, Seong-Woo;Park, Chang-Sun;Yoo, Jang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1141-1144
    • /
    • 1999
  • This note addresses the problem of reliable (equation omitted) output-feedback control design for linear systems with actuator and/or sensor failures. An output feedback control design is proposed which stabilizes the plant and guarantees an (equation omitted)-norm bound on at-tenuation of augmented disturbances including all admissible actuator/sensor failures. Based on the linear matrix inequality (LMI) approach, the output- feedback controller design method is constructed by formulating to LMIs that cover all failure cases. Ef-fectiveness of this controller is validated via a numerical example.

  • PDF

Structural Behavior of Fire-Damaged Reinforced Concrete Beam with High Strength Concrete (화재 피해를 입은 고 강도 철근콘크리트 휨 부재의 구조 거동)

  • 신미경;신영수;이차돈;홍성걸;이은주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.635-638
    • /
    • 2003
  • This paper deals with structural behavior of reinforced concrete beams with high strength under fire and fire damaged condition. The main purpose of this study is to evaluate the residual strength of flexural members by exposure time to fire. For this purpose, six beam specimens are fabricated and experimented. Among the specimens, four specimens are exposed to the fire for 60 and 90 minutes and two specimens are control beam that is not exposed to fire. After being cooled in room temperature, the specimens are loaded to the failure. The research result shows that the main variables of the test, concrete cover and exposure time to fire are much influenced on the structural behavior and the residual strength.

  • PDF

Design for Warm Forming of a Mg El-cover Part Using a Ductile Fracture Criterion (연성파괴이론에 의한 마그네슘 합금 EL-cover 부품 온간 성형 공정 설계)

  • Kim, S.W.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.238-243
    • /
    • 2014
  • Recently, magnesium alloys have been widely used in the automotive, aerospace and electronics industries with the advantages of high specific strength, excellent machinability, high electrical conductivity, and high thermal conductivity. Deep drawn magnesium alloys not only meet the demands environmentally and the need for lighter products, but also can lead to remarkably improved productivity and more rapid qualification of the product The current study reports on a failure prediction procedure using finite element modeling (FEM) and a ductile fracture criterion and applies this procedure to the design of a deep drawing process. Critical damage values were determined from a series of uniaxial tensile tests and FEM simulations. They were then expressed as a function of strain rate and temperature. Based on the plastic deformation histories obtained from the FEM analyses of the warm drawing process and the critical damage value curves, the initiation time and location of fracture were predicted. The proposed method was applied to the process design for fabrication of a Mg automotive compressor case and verified with experimental results. The final results indicate that a Mg case part 39% lighter than an Al die casting part can be produced without any defects.

Effect of Time-dependent Diffusion and Exterior Conditions on Service Life Considering Deterministic and Probabilistic Method (결정론 및 확률론적 방법에 따라 시간의존성 염화물 확산계수 및 외부 영향인자가 내구수명에 미치는 영향)

  • Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2016
  • Service life evaluation for RC Structures exposed to chloride attack is very important, however the previous two methods(deterministic and probabilistic method) show a big difference. The paper presents a service life simulation using deterministic and probabilistic method with time-dependent diffusion coefficient. Three different cases are considered for diffusion coefficient, concrete cover depth, and surface chloride content respectively, and then the PDF(probability of durability failure) and the related service life are obtained. Through adopting time-dependent diffusion, the discrepancy between the two methods can be reduced, which yields reasonable service life. When diffusion coefficient increases from $2.5{\times}10^{-12}m^2/sec$ to $7.5{\times}10^{-12}m^2/sec$, the service life decreases to 25.5~35.6% level, and cover depth does from 75 mm to 125 mm, it increases to 267~311% level as well. In the case of surface chloride content from $5.0kg/m^3$ to $15.0kg/m^3$, it changes to 40.9~54.5%. The effect of cover depth is higher than the others by 8~10 times and also implies it is a key parameter to service life extension.

Sector Based Scanning and Adaptive Active Tracking of Multiple Objects

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin;Cho, We-Duke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1166-1191
    • /
    • 2011
  • This paper presents an adaptive active tracking system with sector based scanning for a single PTZ camera. Dividing sectors on an image reduces the search space to shorten selection time so that the system can cover many targets. Upon the selection of a target, the system estimates the target trajectory to predict the zooming location with a finite amount of time for camera movement. Advanced estimation techniques using probabilistic reason suffer from the unknown object dynamics and the inaccurate estimation compromises the zooming level to prevent tracking failure. The proposed system uses the simple piecewise estimation with a few frames to cope with fast moving objects and/or slow camera movements. The target is tracked in multiple steps and the zooming time for each step is determined by maximizing the zooming level within the expected variation of object velocity and detection. The number of zooming steps is adaptively determined according to target speed. In addition, the iterative estimation of a zooming location with camera movement time compensates for the target prediction error due to the difference between speeds of a target and a camera. The effectiveness of the proposed method is validated by simulations and real time experiments.

Reconstruction of a Complex Scalp Defect after the Failure of Free Flaps: Changing Plans and Strategy

  • Kim, Youn Hwan;Kim, Gyeong Hoe;Kim, Sang Wha
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.2
    • /
    • pp.112-116
    • /
    • 2017
  • The ideal scalp reconstruction involves closure of the defect with similar hair-bearing local tissue in a single step. Various reconstructions can be used including primary closure, secondary healing, skin grafts, local flaps, and microvascular tissue transfer. A 53-year-old female patient suffered glioblastoma, which had recurred for the second time. The neuro-surgeons performed radial debridement and an additional resection of the tumor, followed by reconstruction using a serratus anterior muscle flap with a split-thickness skin graft. Unfortunately, the flap became completely useless and a bilateral rotation flap was used to cover the defect. Two month later, seroma with infection was found due to recurrence of the tumor. Additional surgery was performed using multiple perforator based island flap. The patient was discharged two weeks after surgery without any complications, but two months later, the patient died. Radical surgical resection of tumor is the most important curative option, followed by functional and aesthetic reconstruction. We describe a patient with a highly malignant tumor that required multiple resections and subsequent reconstruction. Repeated recurrences of the tumor led to the failure of reconstruction and our strategy inevitably changed, from reconstruction to palliative treatment involving fast and stable wound closure for the patient's comfort.