• Title/Summary/Keyword: cover concrete

Search Result 580, Processing Time 0.03 seconds

A Study on the Fire Resistance Performance of RC Structure Void Slab Using The Lightweight Hollow Sphere (경량 중공체를 적용한 RC조 중공슬래브의 내화성능에 관한 연구)

  • Cho, Bum-Yean;Yeo, In-Hwan;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.89-97
    • /
    • 2011
  • This study is for evaluating the fire resistance performance (1~2 h) of the RC Structure void slab using the Lightweight Hollow Sphere, which can reduce the unnecessary dynamic part of removing the central concrete. For this experiment, we set up depth of concrete cover, live load, and span length as the factors. The result comes out with all the slabs under those conditions can ensure the goal fire resistance performance (120 min). And among these factors, the resisting capability changes more sensitively with the live load rather than the thickness of cover. And the shorter span length could assure the better the fire resistance performance. The result observing the character in high temperature of the Lightweight Hollow Sphere which does not used as existing RC structure slab, a delay section in temperature change is occurred due to the Glass Transition in $100^{\circ}C$. And heat transfer by conduction does not occur at lightweight hollow sphere because the polystyrene in EPS (Expanded Polystyrene) melts point in $185^{\circ}C$. Therefore temperature at lightweight hollow sphere is lower than the concrete and rebar.

Bond Behavior of Epoxy Coated Reinforcement Using Direct Pull-out Test and Beam-End Test (직접인발시험과 보-단부 시험을 이용한 에폭시 도막 철근의 부착특성)

  • Kim, Jee-Sang;Kang, Won Hyeak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.271-278
    • /
    • 2019
  • The corrosion of reinforcements embedded in concrete causes severe deterioration in reinforced concrete structures. As a countermeasure, epoxy coated reinforcements are used to prevent corrosion of reinforcements. When epoxy coated bars are used, the resistance of corrosion is excellent, but epoxy coating on the bars have a disadvantage of reduction in bond capacity comparing to that of normal bars. Therefore, it is necessary to confirm the bond performance of epoxy coated reinforcements through experimental and analytical methods. Bond behaviors of epoxy coated bars for various diameters of 13 and 19mm and thicknesses of cover concrete of 3 types(ratio of cover to bar diameter) are examined. As the diameters of the epoxy coated bars increase, the difference of bond strength between epoxy coated and uncoated bars also increases and damage patterns showed pull out failure. In addition, finite element analysis was performed based on the bond-slip relationship obtained by direct pullout test and compared with the flexural test results. It is considered that flexural member test is more useful than pullout test for simulating the behavior of actual structure.

Time Dependent Chloride Transport Evaluation of Concrete Structures Exposed to Marine Environment (해안 환경 하에 있는 콘크리트 구조물의 시간의존적 염화물침투 평가)

  • Song, Ha-Won;Pack, Seung-Woo;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.585-593
    • /
    • 2007
  • This paper presents a model for durability evaluation of concrete structures exposed to marine environment, considering mainly a build-up of surface chloride $(C_s)$ as well as diffusion coefficient (D) and chloride threshold level $(C_{lim})$. In this study, time dependency of $C_s$ and D were extensively studied for more accurate evaluation of service life of concrete structures. An analytical solution to the Fick's second law was presented for prediction of chloride ingress for time varying $C_s$. For the time varying $C_s$, a refined model using a logarithm function for time dependent $C_s$ was proposed by the regression analysis, and averaging integrated values of the D with time over exposed duration were calculated and then used for prediction of the chloride ingress to consider time dependency of D. Durability design was also carried out for railway concrete structures exposed to marine environment to ensure 100 years of service life by using the proposed models along with the standard specification on durability in Korea. The proposed model was verified by the so-called performance-based durability design, which is widely used in Europe. Results show that the standard specification underestimates durability performances of concrete structures exposed to marine environment, so the cover depth design using current durability evaluation in the standard specifications is very much conservative. Therefore, it is found that utilizing proposed models considering time dependent characteristics of $C_s$ and D can evaluate service lift of concrete structures in marine environment more accurately.

Flexural Behavior of RC Beams Strengthened with Steel Strand and Carbon Fiber Sheet (강연선 및 탄소섬유쉬트로 보강된 철근 콘크리트 보의 휨거동 특성)

  • 양동석;박선규;이용학
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. Therefore, considerable efforts are still being made to develop new construction materials. Rehabilitation of damaged RC structures occasionally requires the removal and replacement of concrete in the tension zone of the structural members. Typical situation where the tension zone repair is necessary is when the concrete in the tension zone in beams or slabs has spalled off as a result of corrosion in the bottom reinforcing bars or due to extensive fire. The rehabilitation of such conditions normally involves the removal of the concrete beyond the reinforcement bars, cleaning or replacing the tensile bars and reinstatement of concrete to cover the steel bars the original shape and size. This study focused on the flexural behavior of reinforced concrete beams strengthened by steel strand and carbon fiber sheet in the tension zone. The properties of beams are 15$\times$25 cm rectangular and over a 200cm span. Test parameters in this experimental study were strengthening methods, jacking volume, the number of sheet. We investigated the flexural behavior of simply supported RC beams which are strengthened with the carbon fiber sheet, monotonic loads. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated beams.

A Study on the Method for Ecological Restoration on Abandoned Concrete-paved Road - Focused on the Experimental Construction Site in Young Dong Province of GyungBu Express Highway(227.24~229.04km) - (콘크리트 폐도의 생태복원 방안 모색에 관한 연구 - 경부선 영동군 황간지역 시험시공지를 중심으로(경부고속도로 227.24~229.04km 지점) -)

  • Kim, Nam Choon;Ann, Phil Gun;No, Su Dae;Kim, Do Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.4
    • /
    • pp.119-132
    • /
    • 2012
  • The unmanaged abandoned concrete roads are vulnerable toward the issues on soil and water pollution, which requires flexible managing method such as eco-corridor after the process of ecological restoration. Among various alternations of abandoned concrete-paved roads, ecological restoration technique may be the most suitable method in sites including high quality of natural environment. Therefore, as in Young dong province, GyungBu express highway (227.24~229.04km), which is near to Hwang-gan IC, the survey to measure its effect of soil under the paving and water pollution by abandoned concrete roads was discussed. Then, the restoration method of plantings of landscape trees and hydro-seeding methods of artificial soil media was appraised through consecutive monitoring. The soil adequacy analysis shows lower percentage of heavy metal substance in each depth level compared to standard limit stated by the Ministry of Environment, along with low concerns raised after the analysis on heavy metal content of the spilled water on the concrete roads. Meanwhile, Korean Weigela (Weigela subsessilis L.H. Baily) was found to be withered in small-scale landscape trees planting sites. Among the seeding plants. the family of leguminosae, Silene armeria, Dendranthema boreale, Caryopteris incana and Aster yomena show good establishment results. Overall studies on planting of small and large landscape trees, planting method of container plants, planting method of ground cover plants, and germination and development trend of seeding plants of the experimental restoration site on abandoned concrete roads are revealing specific trends in the way landscape woody plants establishment and growth. Finally, this study suggests further studies and survey on varied plant restoration methods on abandoned concrete-roads for developed design guidelines of their methods.

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

Prestressed concrete beams under torsion-extension of the VATM and evaluation of constitutive relationships

  • Bernardo, Luis F.A.;Andrade, Jorge M.A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.577-592
    • /
    • 2017
  • A computing procedure is presented to predict the ultimate behavior of prestressed beams under torsion. This computing procedure is based on an extension of the Variable Angle Truss-Model (VATM) to cover both longitudinal and transversal prestressed beams. Several constitutive relationships are tested to model the behavior of the concrete in compression in the struts and the behavior of the reinforcement in tension (both ordinary and prestress). The theoretical predictions of the maximum torque and corresponding twist are compared with some results from reported tests and with the predictions obtained from some codes of practice. One of the tested combinations of the relationships for the materials was found to give simultaneously the best predictions for the resistance torque and the corresponding twist of prestressed beams under torsion. When compared with the predictions from some codes of practice, the theoretical model which incorporates the referred combination of the relationships provides best values for the torsional strength and leads to more optimized designs.

Seismic Performance of RC Circular Colunm-Bent Piers under Bidirectional Repeated Loadings according to Main Loading Direction (2축 반복하중을 받는 2주형 RC 원형교각의 주하중방향에 따른 내진성능평가)

  • Park, Chang-Kyu;Lee, Beom-Gi;Yun, Sang-Cheol;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.284-291
    • /
    • 2005
  • A RC column-bent pier represents one of the most popular piers used in highway bridges. Seismic performance of reinforced concrete (RC) column-bent piers under bidirectional seismic loadings was experimentally investigated. Six column bent-piers were constructed with two circular supporting columns which were made in 400mm diameter and 2,000mm height. Test parameters are different transverse reinforcement and loading pattern. These piers were tested under lateral load reversals with the axial load of $0.1f_{ck}A_g$. Three specimens were subjected to bidirectional lateral load cycles which consisted of two main longitudinal loads and two sub transverse loads in one load cycle. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter three specimens were generally bigger than those of the former three specimens. Plastic hinges were formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom plastic hinge of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

  • PDF

Performance evaluation of smart prefabricated concrete elements

  • Zonta, Daniele;Pozzi, Matteo;Bursi, Oreste S.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.475-494
    • /
    • 2007
  • This paper deals with the development of an innovative distributed construction system based on smart prefabricated concrete elements for the real-time condition assessment of civil infrastructure. So far, two reduced-scale prototypes have been produced, each consisting of a $0.2{\times}0.3{\times}5.6$ m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optic Sensors (FOS) at the lower edge. The sensing system is Fiber Bragg Grating (FBG)-based and can measure finite displacements both static and dynamic with a sample frequency of 625 Hz per channel. The performance of the system underwent validation in the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including cover spalling and corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. The outcomes of the experiment demonstrate how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.

Paris Rive Gauche Project: (Re)developping the City on the City

  • Ernek, Benoit
    • Land and Housing Review
    • /
    • v.5 no.3
    • /
    • pp.123-129
    • /
    • 2014
  • Paris hasn't experienced such excitement since the huge changes brought about by Baron Haussmann in the 19th century. Paris Rive Gauche project, started in 1991, is the largest urban project in city ever since, it represents about 1% of Paris territory. It takes place on a workshops, factories and warehouses area that prospered along the Seine river and the railways in the 19th century. Originally planned as a business quarter, Paris Rive Gauche, developed by SEMAPA for the City of Paris, fosters urban diversity through housing, offices, public facilities, shops, creating a stimulating neighbourhood where 18,000 residents, 30,000 students as well as 60,000 employees will soon croth paths. This project's main principles are urban and social diversity, deployment of public facilites, the development of new university campus inside the city, promotion of industrial patrimony and connecting the old 13th distict to the river and the opposite side. Half of the project is going to be built on a concrete slab that covers the railway tracks which is one of the major performances of this long-term project. This concrete slab represents the new level of the City, about 6 to 8 meters above the railway tracks. We distinguish three families of buildings on the cover : Classic buildings; Bridges buildings and Connection buildings, these last guarantee the linkage between old and new level of the City.