• Title/Summary/Keyword: covariance model

Search Result 637, Processing Time 0.025 seconds

Attitude toward the Website for Apparel Shopping (Part I): Measurement Model Testing (의류 쇼핑 웹사이트 태도 형성 모델 연구 (제1보) -웹사이트 속성, 웹사이트 쇼핑가치, 웹사이트 태도 측정모형 검증-)

  • 홍희숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.11
    • /
    • pp.1482-1494
    • /
    • 2004
  • This study identified convergent validity and discriminant validity of measurement variables by factor analysis using Spss program and tested covariance measurement model including latent variables such as the website attributes (interactivity, search and visual information of website), shopping values(utilitarian and hedonic value) and attitude toward website by AMOS program. The data were collected from a sample of 271 internet shopper of university students(male: 82, female: 189). They visited the website for apparel shopping and, after searching a casual clothing which they wanted to buy, requested to answer the questionnaire. The results were as follows: Variables that reduce validity were deleted in the several steps of factor analysis and initial measurement model testing. Final measurement model was constructed by valid variables was accepted. This measurement model will be input for testing causal research model that can explain how attributes of the website influences on consumer attitude toward the website.

A Resiliency Model for Families of Children with Disabilities (장애아동가족의 복원모델 연구)

  • Oh, Seung Ah;Lee, Yang Hee
    • Korean Journal of Child Studies
    • /
    • v.22 no.2
    • /
    • pp.113-132
    • /
    • 2001
  • In order to develop a model for better understanding of causal relationships in resiliency factors in families of children with disabilities, 200 families participated in this adaptation of the Resiliency Model of McCubbin and McCubbin(1993). The 6 latent variables included in the hypothesized model were family stress, family hardiness, family schema, community support, family problem-solving communication, and family adaptation. The models were developed on the basis of confirmatory factor analysis and compared using covariance structure modeling (LISREL). Adequate fitness of the model was observed. Family stress showed negative effect on family schema and on family hardiness. Family schema showed positive effect on community support and on family hardiness. Family hardiness showed positive effect on family problem-solving communication, and family problem-solving communication showed positive effect on family adaptation.

  • PDF

A Study on the Noisy Speech Recognition Based on Multi-Model Structure Using an Improved Jacobian Adaptation (향상된 JA 방식을 이용한 다 모델 기반의 잡음음성인식에 대한 연구)

  • Chung, Yong-Joo
    • Speech Sciences
    • /
    • v.13 no.2
    • /
    • pp.75-84
    • /
    • 2006
  • Various methods have been proposed to overcome the problem of speech recognition in the noisy conditions. Among them, the model compensation methods like the parallel model combination (PMC) and Jacobian adaptation (JA) have been found to perform efficiently. The JA is quite effective when we have hidden Markov models (HMMs) already trained in a similar condition as the target environment. In a previous work, we have proposed an improved method for the JA to make it more robust against the changing environments in recognition. In this paper, we further improved its performance by compensating the delta-mean vectors and covariance matrices of the HMM and investigated its feasibility in the multi-model structure for the noisy speech recognition. From the experimental results, we could find that the proposed improved the robustness of the JA and the multi-model approach could be a viable solution in the noisy speech recognition.

  • PDF

ROC curve and AUC for linear growth models (선형성장모형에 대한 ROC 곡선과 AUC)

  • Hong, Chong Sun;Yang, Dae Soon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1367-1375
    • /
    • 2015
  • Consider the linear growth models for longitudinal data analysis. Several kind of linear growth models are selected such as time-effect and random-effect models as well as a dummy variable included model. In this work, simulation data are generated with normality assumption, and both binormal ROC curve and AUC are obtained and compared for various linear growth models. It is found that ROC curves have different shapes and AUC increase slowly, as values of the covariance increase and the time passes for random-effect models. On the other hand, AUC increases very fast as values of covariance decrease. When the covariance has positive value, we explored that the variances of random-effect models increase and the increment of AUC is smaller than that of AUC for time-effect models. And the increment of AUC for time-effect models is larger than the increment for random-effect models.

A comparison study of Bayesian variable selection methods for sparse covariance matrices (희박 공분산 행렬에 대한 베이지안 변수 선택 방법론 비교 연구)

  • Kim, Bongsu;Lee, Kyoungjae
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.285-298
    • /
    • 2022
  • Continuous shrinkage priors, as well as spike and slab priors, have been widely employed for Bayesian inference about sparse regression coefficient vectors or covariance matrices. Continuous shrinkage priors provide computational advantages over spike and slab priors since their model space is substantially smaller. This is especially true in high-dimensional settings. However, variable selection based on continuous shrinkage priors is not straightforward because they do not give exactly zero values. Although few variable selection approaches based on continuous shrinkage priors have been proposed, no substantial comparative investigations of their performance have been conducted. In this paper, We compare two variable selection methods: a credible interval method and the sequential 2-means algorithm (Li and Pati, 2017). Various simulation scenarios are used to demonstrate the practical performances of the methods. We conclude the paper by presenting some observations and conjectures based on the simulation findings.

Functional Separation of Myoelectric Signal of Human Arm Movements using Autoregressive Model (자기회귀 모델을 이용한 팔 운동 근전신호의 기능분리)

  • 홍성우;손재현;서상민;이은철;이규영;남문현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.76-84
    • /
    • 1993
  • In this thesis, general method using autoregressive model in the functional separation of the myoelectric signal of human arm movements are suggested. Covariance method and sequential least squares algorithm were used to determine the model parameters and the order of signal model to describe six arm movement patterns` the forearm flexion and extension, the wrist pronation and supination, rotation-in and rotation out. The confidence interval to classify the functions of arm movement was defined by the mean and standard deviation of total squares error. With the error signals of autoregressive(AR) model, the result showed that the highest success, rate was abtained in the case of 4th order, and success rate was decreased with increase of order. This technique might be applied to biomedical-and rehabilitation-engi-neering.

  • PDF

The Verification of Application of Distributed Runoff Model According to Estimation Methods for the Missing Rainfall Data (결측강우보완방법에 따른 분포형 유출모형의 적용성 검증)

  • Choi, Yong-Joon;Kim, Yeon-Su;Lee, Gi-Ha;Kim, Joo-Cheol
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1375-1384
    • /
    • 2010
  • The purpose of this research is to understand the change of runoff characteristics by estimated spatial rainfall. Therefore, this paper largely composed of two parts. First, we compared the simulated result according to estimation method, ID(Inverse Distance Method, ID2(Inverse Square Distance Method), and Kr(General Covariance Kriging Method), after letting miss rainfall data to the observed data. Second, we reviewed the runoff characteristics of the distributed runoff model according to the estimated spatial rainfall. On the basis of Yuseong water level station, we select the target basin as Gabchun watershed. We assumed 1 point or 2 point of the 6 rainfall gauge stations in watershed were missed. We applied the spatial rainfall distributed by Kr to Hy-GIS GRM, distributed runoff model. When 1 point rainfall data is missed, Kr is superior to others in point rainfall estimation and runoff estimation of Hy-GIS GRM. However, in case rainfall data of 2 points is missed, all of three methods did not give suitable result for them. In conclusion, Kr showed better applicability than other estimated methods if rainfall's data less than 2 points is missed.

Adaptive Noise Removal Based on Nonstationary Correlation (영상의 비정적 상관관계에 근거한 적응적 잡음제거 알고리듬)

  • 박성철;김창원;강문기
    • Journal of Broadcast Engineering
    • /
    • v.8 no.3
    • /
    • pp.278-287
    • /
    • 2003
  • Noise in an image degrades image quality and deteriorates coding efficiency. Recently, various edge-preserving noise filtering methods based on the nonstationary image model have been proposed to overcome this problem. In most conventional nonstationary image models, however, pixels are assumed to be uncorrelated to each other in order not to Increase the computational burden too much. As a result, some detailed information is lost in the filtered results. In this paper, we propose a computationally feasible adaptive noise smoothing algorithm which considers the nonstationary correlation characteristics of images. We assume that an image has a nonstationary mean and can be segmented into subimages which have individually different stationary correlations. Taking advantage of the special structure of the covariance matrix that results from the proposed image model, we derive a computationally efficient FFT-based adaptive linear minimum mean-square-error filter. Justification for the proposed image model is presented and effectiveness of the proposed algorithm is demonstrated experimentally.

Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea (공간자료와 지면모형을 이용한 면적증발산 추정)

  • Yun J. I.;Nam J. C.;Hong S. Y.;Kim J.;Kim K. S.;Chung U.;Chae N. Y.;Choi T. J
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.

Application of Recurrent Neural-Network based Kalman Filter for Uncertain Target Models (불확정 표적 모델에 대한 순환 신경망 기반 칼만 필터 설계)

  • DongBeom Kim;Daekyo Jeong;Jaehyuk Lim;Sawon Min;Jun Moon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.10-21
    • /
    • 2023
  • For various target tracking applications, it is well known that the Kalman filter is the optimal estimator(in the minimum mean-square sense) to predict and estimate the state(position and/or velocity) of linear dynamical systems driven by Gaussian stochastic noise. In the case of nonlinear systems, Extended Kalman filter(EKF) and/or Unscented Kalman filter(UKF) are widely used, which can be viewed as approximations of the(linear) Kalman filter in the sense of the conditional expectation. However, to implement EKF and UKF, the exact dynamical model information and the statistical information of noise are still required. In this paper, we propose the recurrent neural-network based Kalman filter, where its Kalman gain is obtained via the proposed GRU-LSTM based neural-network framework that does not need the precise model information as well as the noise covariance information. By the proposed neural-network based Kalman filter, the state estimation performance is enhanced in terms of the tracking error, which is verified through various linear and nonlinear tracking problems with incomplete model and statistical covariance information.