• Title/Summary/Keyword: coupling techniques

Search Result 210, Processing Time 0.022 seconds

Shape Function Modification for the Imposition of EFGM Essential Boundary Conditions (EFGM에서 필수경계조건 처리를 위한 형상함수 수정법)

  • Seok, Byeong-Ho;Song, Tae-Han;Im, Jang-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.803-809
    • /
    • 2000
  • For the effective analysis of an engineering problem, meshless methods which require only positioning finite points without the element meshing recently have been proposed and being studied extensively. Meshless methods have difficulty in imposing essential boundary conditions directly, because non-interpolate shape functions originated from an approximation process are used. So some techniques, which are Lagrange multiplier method, modified variational principles and coupling with finite elements and so on, were introduced in order to impose essential boundary conditions. In spite of these methods, imposition of essential boundary conditions have still many problems like as non-positive definiteness, inaccuracy and negation of meshless characteristics. In this paper, we propose a new method which modifies shape function. Through numerical tests, convergence, accuracy and validity of this method are compared with the standard EFGM which uses Lagrange multiplier method or modified variational principles. According to this study, the proposed method shows the comparable accuracy and efficiency.

Identification of flutter derivatives from full-scale ambient vibration measurements of the Clifton Suspension Bridge

  • Nikitas, Nikolaos;Macdonald, John H.G.;Jakobsen, Jasna B.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.221-238
    • /
    • 2011
  • The estimated response of large-scale engineering structures to severe wind loads is prone to modelling uncertainties that can only ultimately be assessed by full-scale testing. To this end ambient vibration data from full-scale monitoring of the historic Clifton Suspension Bridge has been analysed using a combination of a frequency domain system identification method and a more elaborate stochastic identification technique. There is evidence of incipient coupling action between the first vertical and torsional modes in strong winds, providing unique full-scale data and making this an interesting case study. Flutter derivative estimation, which has rarely previously been attempted on full-scale data, was performed to provide deeper insight into the bridge aerodynamic behaviour, identifying trends towards flutter at higher wind speeds. It is shown that, as for other early suspension bridges with bluff cross-sections, single-degree-of-freedom flutter could potentially occur at wind speeds somewhat below requirements for modern designs. The analysis also demonstrates the viability of system identification techniques for extracting valuable results from full-scale data.

The Optical Design of Probe-type Microscope Objective for Intravital Laser Scanning CARS Microendoscopy

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.431-437
    • /
    • 2010
  • A stack of gradient-index (GRIN) rod lenses cannot be used for coherent anti-Stokes Raman scattering (CARS) microendoscopy for insertion to internal organs through a surgical keyhole with minimal invasiveness. That's because GRIN lens has large amount of inherent chromatic aberrations in spite of absolutely requiring a common focus for pump and Stokes beam with each frequency of ${\omega}_p$ and ${\omega}_S$. For this endoscopic purpose, we need to develop a long slender probe-type objective, namely probe-type microscope objective (PMO). In this paper, we introduce the structure, the working principle, and the design techniques of PMO which is composed of a probe-type lens module (PLM) and an adaptor lens module (ALM). PLM is first designed for a long slender type and ALM is successively designed by using several design parameters from PLM for eliminating optical discords between scanning unit and PLM. A combined module is optimized again to eliminate some coupling disparities between PLM and ALM for the best PMO. As a result, we can obtain a long slender PMO with perfectly diffraction-limited performance for pump beam of 817 nm and Stokes beam of 1064 nm.

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.575-580
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. 1'he hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_{3}$) coupling. It is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b/}$rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.f the blade.

  • PDF

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.734-740
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered In the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton’s principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_3$) coupling. It Is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b}$ /rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.e.

Optimal Controller for Near-Space Interceptor with Actuator Saturation

  • Fan, Guo-Long;Liang, Xiao-Geng;Hou, Zhen-Qian;Yang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.256-263
    • /
    • 2013
  • The saturation of the actuator impairs the response performance of the near space interceptor control system. A control system based on the properties of linear tracking system is designed for this problem. The properties are that the maximum value of the pseudo-Lyapunov function of the linear tracking control system do not present at the initial state but at the steady state, based on which the bounded stability problem is converted into linear tracking problem. The pseudo-Lyapunov function of the linear tracking system contain the input variables; the amplitude and frequency of the input variables affect the stability of the nonlinear control system. Designate expected closed-loop poles area for different input commands and obtain a controller which is function of input variables. The coupling between variables and linear matrices make the control system design problem non-convex. The non-convex problem is converted into a convex LMI according to the Shur complement lemma and iterative algorithm. Finally the simulation shows that the designed optimal control system is quick and accurate; the rationality of the presented design techniques is validated.

Improvement of Test Method for t-ws Falult Detect (t-ws 고장 검출을 위한 테스트 방법의 개선)

  • 김철운;김영민;김태성
    • Electrical & Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.349-354
    • /
    • 1997
  • This paper aims at studying the improvement of test method for t-weight sensitive fault (t-wsf) detect. The development of RAM fabrication technology results in not only the increase at device density on chips but also the decrease in line widths in VLSI. But, the chip size that was large and complex is shortened and simplified while the cost of chips remains at the present level, in many cases, even lowering. First of all, The testing patterns for RAM fault detect, which is apt to be complicated , need to be simplified. This new testing method made use of Local Lower Bound (L.L.B) which has the memory with the beginning pattern of 0(l) and the finishing pattern of 0(1). The proposed testing patterns can detect all of RAM faults which contain stuck-at faults, coupling faults. The number of operation is 6N at 1-weight sensitive fault, 9,5N at 2-weight sensitive fault, 7N at 3-weight sensitive fault, and 3N at 4-weight sensitive fault. This test techniques can reduce the number of test pattern in memory cells, saving much more time in test, This testing patterns can detect all static weight sensitive faults and pattern sensitive faults in RAM.

  • PDF

Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building

  • Lim, Hyun-Kyu;Kang, Jun Won;Lee, Young-Geun;Chi, Ho-Seok
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.2
    • /
    • pp.143-156
    • /
    • 2016
  • Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 international benchmark program. The benchmark program provides material properties, detailed drawings of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear constitutive models of concrete and rebar were formed and local tests were conducted to verify the constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 2013 RC structure was performed by comparing numerical and experimental results in modal and linear time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground motions.

High Crystalline Epitaxial Bi2Se3 Film on Metal and Semiconductor Substrates

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.302-302
    • /
    • 2011
  • The binary chalcogenide semiconductor Bi2Se3 is at the center of intensive research on a new state of matter known as topological insulators. It has Dirac point in their band structures with robust surface states that are protected against external perturbations by strong spin-orbit coupling with broken inversion symmetry. Such unique band configurations were confirmed by recent angle-resolved photoelectron emission spectroscopy experiments with an unwanted n-type doping effect, showing a Fermi level shift of about 0.3 eV caused by atomic defects such as Se vacancies. Since the number of defects can be reduced using the molecular beam epitaxy (MBE) method. We have prepared the Bi2Se3 film on noble metal Au(111) and semiconductor Si(111) substrates by MBE method. To characterize the film, we have introduced several surface sensitive techniques including x-ray photoemission electron spectroscopy (XPS) and micro Raman spectroscopy. Also, crystallinity of the film has been confirmed by x-ray diffraction (XRD). Using home-built scanning tunneling microscope, we observed the atomic structure of quintuple layered Bi2Se3 film on Au(111).

  • PDF

Soft x-ray magneto-optical effect as a nanometer scale probe of heteromagnetic structures widely used in spintronics devices

  • Kim, Sang-Koog
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.7-7
    • /
    • 2003
  • Heteromagnetic nanostructures, which consist of two or more different layers such as nonmagnet, insulator, ferromagnet, antiferromagnet, and superconductor, have been widely used in current and likely future spintronics devices. Their many intriguing magnetic properties are originated from a variety of magnetic interactions at relevant length scales at or near interfaces and between different constituent layers as well as laterally different regions in chemical and magnetic heterogeneity. The fundamental properties can thus differ along depth and laterally in the film plane, depending on their relevant coupling length scales. The entire properties may be characterized by interface properties and/or the depth-varying properties of the individual constituent layers, and lateral inhomogeneity as well. It is a challenge to investigate both depth-varying properties and lateral heterogeneity in such heteromagnetic nanostructures. In this talk, soft x-ray magneto-optical effect as a nanometer scale probe of a variety of heteromagnetic structures is presented and its related noble techniques are introduced. For instances, magnetization vector imaging to investigate vector spin configurations in the film plane is presented, as well as the Kerr rotation, ellipticity, and intensity measurements as a depth sensitive probe on the atomic scales.

  • PDF