• 제목/요약/키워드: coupling coefficients

검색결과 180건 처리시간 0.025초

(Pb,Ba)(Zr,Ti)$O_3$계 세라믹스의 )$Y_2O_3$첨가에 따른 유전 및 전왜 특성 (Dielectric and electrostrictive properties of (Pb,Ba)(Zr,Ti))$O_3$ ceramics with $Y_2O_3$addition)

  • 김규수;윤광희;윤현상;홍재일;유주현;박창엽
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권6호
    • /
    • pp.551-557
    • /
    • 1996
  • To decrease the hysteresis of electric field induced strain, $Y_{2}$ $O_{3}$ dopant of which amount is 0-0.8wt% was added to the (P $b_{0.73}$B $a_{0.27}$)(Z $r_{0}$ 75/ $Ti_{0.25}$) $O_{3}$ ceramics. Electromechanical coupling coefficients of the specimen with 0.1 Wt% $Y_{2}$ $O_{3}$ were $k_{p}$=26.9% and $k_{31}$ =20.4%, which exhibited the maximum value at the constant bias electric field of 10 kV/cm. At the same $Y_{2}$ $O_{3}$ addition amount, electric field piezoelectric constant ( $d_{3l}$) and strain(.DELTA.l/l) showed the maximum values of 139.6*10$^{-12}$ [C/N] and 126*10$^{-6}$ .DELTA. l/l respectively at 10 kV/cm electric field. And the hysteresis of strain showed the minimum value of 17.5%. So, we propose that it is possible to apply PBZT system with $Y_{2}$ $O_{3}$ dopant to the electrostrictive actuator.r.r.

  • PDF

배경 잡음을 제거하는 음성 신호 잡음 제거기의 구현 (Implementation of Environmental Noise Remover for Speech Signals)

  • 김선일;양성룡
    • 전자공학회논문지 IE
    • /
    • 제49권2호
    • /
    • pp.24-29
    • /
    • 2012
  • 자동차 배기음은 음성과 무관한 거의 독립적인 음원이라고 볼 수 있다. 따라서 자동차 배기음과 섞인 음성 신호의 경우에 두 음원에 대한 사전 정보가 없는 상황이므로 Blind Source Separation 의 한 방법인 Independent Component Analysis를 이용하여 분리해 내었다. 스테레오 마이크를 통해 섞여 들어 온 두 음원을 분리해 내기 위해 Maximum Likelyhood Estimation을 이용하여 각 신호들 사이의 독립성을 최대화 하는 방향으로 분리하였다. 분리된 신호는 어느 쪽이 음성 신호인지 알 수 없으므로 주파수 영역에서 자기 공분산을 구한 후 이 공분산 값들의 기울기를 이용하여 음성 신호와 자동차 배기음 신호을 구분하였으며 이 두 알고리즘을 결합하여 음성 신호 잡음 제거기를 구현하였다.

Modeling of ion diffusion coefficient in saturated concrete

  • Zuo, Xiao-Bao;Sun, Wei;Yu, Cheng;Wan, Xu-Rong
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.421-435
    • /
    • 2010
  • This paper utilizes the modified Davis model and the mode coupling theory, as parts of the electrolyte solution theory, to investigate the diffusivity of the ion in concrete. Firstly, a computational model of the ion diffusion coefficient, which is associated with ion species, pore solution concentration, concrete mix parameters including water-cement ratio and cement volume fraction, and microstructure parameters such as the porosity and tortuosity, is proposed in the saturated concrete. Secondly, the experiments, on which the chloride diffusion coefficient is measured by the rapid chloride penetration test, have been carried out to investigate the validity of the proposed model. The results indicate that the chloride diffusion coefficient obtained by the proposed model is in agreement with the experimental result. Finally, numerical simulation has been completed to investigate the effects of the porosity, tortuosity, water-cement ratio, cement volume fraction and ion concentration in the pore solution on the ion diffusion coefficients. The results show that the ion diffusion coefficient in concrete increases with the porosity, water-cement ratio and cement volume fraction, while we see a decrease with the increasing of tortuosity. Meanwhile, the ion concentration produces more obvious effects on the diffusivity itself, but has almost no effects on the other ions.

Synthesis, Characterization, and Electrochemical Behavior of Viologen-Functionalized Poly(Amidoamine) Dendrimers

  • Oh, Mi-Kyung;Bae, Sang-Eun;Yoon, Jung-Hyun;Roberts, Mary F.;Cha, Eun-Hee;J. Lee, Chi-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.715-720
    • /
    • 2004
  • Amineterminated, ethylenediamine core polyamidoamine starburst dendrimers of generation 2 (G2), generation 4 (G4) and generation 6 (G6) have been successfully surface-modified via an amide coupling reaction with 4-ethyl, 4'-(3-propionic) bipyridinium cation and the electrochemical behavior of the resulting dendrimers were investigated in aqueous potassium chloride electrolyte solutions. The 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide-mediated reaction resulted in 25-39% end-group functionalization. The water-soluble 4-ethyl, 4'-(3-propylamide) bipyridinium dibromide dendrimers (G2-V2+, G4-V2+ and G6-V2+) were characterized by $^1H$ NMR and UV-Vis spectroscopic methods. The cyclic voltammetric and chronoamperometric experiments were performed to determine the diffusion coefficient and the number of electrons transferred in the process of the first reduction of the viologen-functionalized dendrimers. Adsorption of viologen-functionalized dendrimers at electrode surface was evidenced in the voltammograms. Experimentally determined diffusion coefficients were in good agreement with the values expected from the Stokes-Einstein relation, while the number of electrons transferred concurred with the extent of functionalization determined by $^1H$ NMR and UV-Vis spectra.

적응 PID를 이용한 질량 유량 제어기 구현 (Implementation of the Mass Flow Controller using Adaptive PID)

  • 백광렬;조봉수
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.19-25
    • /
    • 2007
  • The MFC(Mass Flow Controller) is an equipment that measures and controls mass flow rates of fluid. Most of the HFC system is still using the PID algorithm. The PID algorithm shows superior performance on the MFC system. But the PID algorithm in the MFC system has a few problems as followed. The characteristic of the MFC system is changed according to the operating environment. And, when the piezo valve that uses the control valve is assembled in the MFC system, a coupling error is generated. Therefore, it is very difficult to find out the exact parameters of MFC system. In this paper, we propose adaptive PID algorithm in order to compensate these problems of a traditional PID algorithm. The adaptive PID algorithm estimates the parameters of MFC system using LMS(Least Mean Square) algorithm and calculates the coefficients of PID controller. Besides, adaptive PID algorithm shows better transient response because adaptive PID algorithm includes a feedforward. And we implement MFC system using proposed adaptive PID algorithm with self-tuning and Ziegler and Nickels's method. Finally, comparative analysis of the proposed adaptive PID and the traditional PID is shown.

Alternative numerical method for identification of flutter on free vibration

  • Chun, Nakhyun;Moon, Jiho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • 제24권4호
    • /
    • pp.351-365
    • /
    • 2017
  • The minimization method is widely used to predict the dynamic characteristics of a system. Generally, data recorded by experiment (for example displacement) tends to contain noise, and the error in the properties of the system is proportional to the noise level (NL). In addition, the accuracy of the results depends on various factors such as the signal character, filtering method or cut off frequency. In particular, coupled terms in multimode systems show larger differences compared to the true value when measured in an environment with a high NL. The iterative least square (ILS) method was proposed to reduce these errors that occur under a high NL, and has been verified in previous research. However, the ILS method might be sensitive to the signal processing, including the determination of cutoff frequency. This paper focused on improving the accuracy of the ILS method, and proposed the modified ILS (MILS) method, which differs from the ILS method by the addition of a new calculation process based on correlation coefficients for each degree of freedom. Comparing the results of these systems with those of a numerical simulation revealed that both ILS and the proposed MILS method provided good prediction of the dynamic properties of the system under investigation (in this case, the damping ratio and damped frequency). Moreover, the proposed MILS method provided even better prediction results for the coupling terms of stiffness and damping coefficient matrix.

디젤기관 추진축계의 연성진동에 관한 연구 (제2보: 강제 감쇠 연성진동 해석) (Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting (2nd Report : Analyzing of Forced Vibration with Damping))

  • 이돈출;김의간;전효중
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 추계학술대회 논문집(Proceeding of the KOSME 2000 Autumn Annual Meeting)
    • /
    • pp.99-107
    • /
    • 2000
  • With the results of calculation for natural frequencies, the forced reponses of coupled vibration of propulsion shafting were analysed by the modal analysis method. For the forced response analysis, axial exciting forces, axial damper/detuner, propeller exciting forces and damping coefficients were extensively investigated. As the conclusion of this study, some items are cleared as next. - The torsional amplitudes are not influenced by the radial excitation forces. - The axial vibrational amplitudes are influenced by the tangential exciting forces. An increase of amplitude is observed for the speed range in the neighbourhood of any torsional critical speed. - The coupling effect becomes larger if torsional and axial critical speed are closer together. - The axial exciting force of propeller is relatively strong, comparing with those of axial forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, as a resume one can say, that- Torsional vibration calculation with the classical one dimension model is still valid. - The influence of torsional excitation at each crank upon the axial vibration is impotent, especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimension model is insufficient in most of cases. - The torsional exciting torque of propeller can be neglected in most of cases. But, the axial exciting forces of propeller can not be neglected for calculating axial vibration of propulsion shafting.

  • PDF

Giant Piezoelectric Nanocomposites Integrated in Physically Responsive Field-effect Transistors for Pressure Sensing Applications

  • Tien, Nguyen Thanh;Trung, Tran Quang;Kim, Do-Il;Lee, Nae-Eung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.550-551
    • /
    • 2012
  • Physically responsive field-effect transistors (physi-FETs), which are sensitive to physical stimuli, have been studied for decades. However, the primary issue of separating responses by sensing materials from interferences by other subcomponents in a FET transducer under global physical stimuli has not been completely resolved. Recent challenges of structural design and employing smart materials with a large electro-physical coupling effect for flexible physi-FETs still remain. In this article, we propose directly integrating nanocomposites of barium titanate (BT) nanoparticles (NPs) and highly crystalline poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) as gate dielectrics into flexible organic FETs to precisely separate and quantify tiny variations of remnant polarization caused by mechanical stimuli. Investigations under static stimuli resulted in first-reported giant-positive piezoelectric coefficients of d33 up to 960 pC/N, presumably due to significant contribution of the intrinsic piezoelectricity of BT NPs and P(VDF-TrFE) crystallites. This approach provides a general research direction, and not limited to physic-FETs.

  • PDF

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

전기자동차용 IPT 컨버터의 풀브릿지-하프브릿지 제어를 통한 고효율 운전 방법 (High Efficiency Operation of the IPT converter with Full and Half bridge Control for Electric Vehicles)

  • 안상준;주동명;김민국;이병국
    • 전력전자학회논문지
    • /
    • 제22권5호
    • /
    • pp.423-430
    • /
    • 2017
  • This paper proposes a control methodology for a high efficiency operation of an inductive power transfer (IPT) converter by combining full bridge (FB) and half bridge (HB) controls. To apply the proposed control to the IPT converter, the characteristics of each control method are analyzed. By examining the output voltages of the IPT converter and a theoretical loss analysis, the control shifting points between FB and HB controls are evaluated in accordance with the coupling coefficients and the load. Based on the control shifting points, the FB-HB control algorithm is implemented. By applying FB-HB control, high efficiency operation at the light load condition can be achieved.