• Title/Summary/Keyword: coupling 2-form

Search Result 144, Processing Time 0.023 seconds

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma - Part I

  • Sun, Yong-Bin
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.123-126
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that EMC filler of silica wears die surface roughened, which results in increase of adhesion strength. As big differences in experimental results from semiconductor manufacturers are dependent on EMC models, however, chemisorptions or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2$, $N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic and vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma Part I

  • Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.31-34
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that the silica as a filler in EMC (epoxy molding compound) wears die surface to be roughened, which results in increase of adhesion strength. As the sticking behavior, however, showed strong dependency on the EMC models based on the experimental results from different semiconductor manufacturers, chemisorption or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2, N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic or vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

Mode of Action on EcoRI Restriction Endonuclease: EcoRI and EcoRI Variant N199H have Active Monomeric Forms

  • Kim, Jae-Jong;Koh, Suk-Hoon;Kim, Joong-Su;Lee, Dae-Sil
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.149-155
    • /
    • 1998
  • The N199H variant of the EcoRI endonuclease has about twice the catalytic activity of the wild-type. A comparison of their biochemical characteristics, using synthetic oligonucleotides 5'-dAAAACTTAAGAAAAAAAAAAA-3' (KA) and 5'-dTTTTTGAATTCTTTTTTTTTT-3' (KT), helps to define the cleavage reaction pathway of these enzymes. Both EcoRI and EcoRI variant N199H were found to cleave singlestranded KA or KT about three times faster than the double-stranded forms, although the KT oligonucleotide was more susceptible. Using the ssDNA substrate in kinetic analyses, lower $K_m$ values were obtained for the N199H variant than for the wild-type at low (50 mM), as well as high (200 mM), sodium chloride concentrations. This difference between the endonucleases is attributed to a grealter accessibility for tbe substrate by the variant, and also a higher affinity for the DNA backbone. It also appears that the relative activities of the two enzymes, particularly at high ionic strength, are proportional to their populations in the monomeric enzyme form. That is, according to gel filtration data, half of the N199H molecules exist as monomers in 200 mM NaCl, whereas those of the wild-type are mainly dimeric. Consequently, the Asp199 residue of the EcoRI endonuclease may be implicated in the protein-protein interaction leading to dimerization, as well as in coupling to DNA substrates. In summary, it is proposed that active monomeric endonuclease molecules, derived from the dimeric enzyme, recognize and form a complex with a single stranded form of the DNA substrate, which then undergoes nucleophilic substitution and cleavage.

  • PDF

A New Model for the Reduced Form of Purple Acid Phosphatase: Structure and Properties of $[Fe_2BPLMP(OAc)_2](BPh_4)_2$

  • 임선화;이진호;이강봉;강성주;허남휘;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.654-660
    • /
    • 1998
  • $[Fe^{II}Fe^{III}BPLMP(OAc)_2](BPh_4)_2$ (1), a new model for the reduced form of the purple acid phosphatases, has been synthesized by using a dinucleating ligand, 2,6-bis[((2-pyridylmethyl)(6-methyl-2-pyridylmethyl)amino) methyl]-4-methylphenol (HBPLMP). Complex I has been characterized by X-ray diffraction method as having (μ-phenoxo)bis(acetato)diiron core. Complex 1 was crystallized in the monoclinic space group C2/c with the following cell parameters: a=41.620(6) Å, b=14.020(3) Å, c=27.007(4) Å, β=90.60(2)°, and Z=8. The iron centers in the complex 1 are ordered as indicated by the difference in the Fe-O bond lengths which match well with typical $Fe^{III}-O\; and\; Fe^{II}-O$ bond lengths. Complex 1 has been studied by electronic spectral, NMR, EPR, SQUID, and electochemical methods. Complex 1 exhibits strong bands at 592 nm, 1380 nm in $CH_3CN$ (ε = 1.0 × 103 , 3.0 × 102). These are assigned to $phenolate-to-Fe^{III}$ and intervalence charge-transfer transitions, respectively. Its NMR spectrum exhibits sharp isotropically shifted resonances, which number half of those expected for a valence-trapped species, indicating that electron transfer between $Fe^{II}\;and\;Fe^{III}$ centers is faster than NMR time scale. This complex undergoes quasireversible one-electron redox processes. The $Fe^{III}_2/Fe^{II}Fe^{III}\;and\;Fe^{II}Fe^{III}/Fe^{II}_2$ redox couples are at 0.655 and -0.085 V vs SCE, respectively. It has $K_{comp}=3.3{\times}10^{12}$ representing that BPLMP/bis(acetate) ligand combination stabilizes a mixed-valence $Fe^{II}Fe^{III}$ complex in the air. Complex 1 exhibits a broad EPR signal centered near g=1.55 which is a characteristic feature of the antiferromagnetically coupled high-spin $Fe^{II}Fe^{III}$ system $(S_{total}=1/2)$. This is consistent with the magnetic susceptibility study showing the weak antiferromagnetic coupling $(J= - 4.6\;cm^{-1},\; H= - 2JS_1{\cdot}S2)$ between $Fe^{II}\; and \;Fe^{III}$center.

A Study on the Dielectric and Piezoelectric properties of the Pb(SbS11/2TSnS11/2T)OS13T-PbTiOS13T-PbZrOS13T Ceramics (Pb(Sb1/2Sn1/2)O3-PbTiO3-PbZrO3 세라믹스의 유전 및 압전 특성에 관한 연구)

  • 정장호;류기원;이성갑;이영희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.517-524
    • /
    • 1992
  • In this study, 0.10Pb(SbS11/2TSnS11/2T)OS13T-(0.90-x)PbZrOS13T (0.25 x 0.40) ceramics were fabricated by the atmospheric method. The sintering temperature and time were 1250[$^{\circ}C$] and 2[2hr], respectively. The structureal, dielectric and piezoelectric properties with composition of PbTiOS13T were studied. As the results of XRD ans SEM, the crystal structure of a specimen was rhombohedral, lattice constant and average grain size were decreased with increasing the contents of PbTiOS13T. Relative dielectric constant and Curie temperature were increased with increasing the contents of PbTiOS13T, 0.10PSS-0.40PT-0.50PZ specimen had the highest values of 904 and 265[$^{\circ}C$], respectively. In increasing of PbTiOS13T contents form 25[mol%] to 40[mol%], piezoelectric charge constant and electromechanical coupling factors were increased form 114[pC/N] to 142[pC/N], 17[%] to 24[%] and mechanical quality factor were decreased with increasing the contents of PbTiOS13T. In the 0.10PSS-0.40PT-0.50PZ specimens, those values were 14.2[kV/cm] and 9.43[x10S0-6TC/cmS02T], resectively.

Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities

  • Bensaid, Ismail;Guenanou, Ahmed
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.45-63
    • /
    • 2017
  • In this article, static deflection and buckling of functionally graded (FG) nanoscale beams made of porous material are carried out based on the nonlocal Timoshenko beam model which captures the small scale influences. The exact position of neutral axis is fixed, to eliminate the stretching and bending coupling due to the unsymmetrical material change along the FG nanobeams thickness. The material properties of FG beam are graded through the thickness on the basis of the power-law form, which is modified to approximate the material properties with two models of porosity phases. By employing Hamilton's principle, the nonlocal governing equations of FG nanobeams are obtained and solved analytically for simply-supported boundary conditions via the Navier-type procedure. Numerical results for deflection and buckling of FG nanoscale beams are presented and validated with those existing in the literature. The influences of small scale parameter, power law index, porosity distribution and slenderness ratio on the static and stability responses of the FG nanobeams are all explored.

Analysis of High Vibration in Nuclear Turbine-Generator (원자력 발전소 터빈-발전기 고진동 저감에 대한 고찰)

  • Lee, Woo-Kwang;Ko, Woo-Sig;Kim, Kye-Yean;Koo, Jae-Raeyang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.46-50
    • /
    • 2007
  • The nuclear power plant's turbine-generator system had been suffered form some problems, such as high shaft vibration, generator casing crack, stator coil water leakage, high $H_2$ gas consumption rate. Those kinds of problems were related to high vibration. So nuclear plant decided to replace generator in order to reduce rotor high vibration and high thermal sensitivity. A series of effort to reduce turbine-generator vibration was carried out as followings, first of all, replacement of generator, analysis of turbine-generator vibration, LP B rotor shop balancing, improvement of LP B/Gen coupling run-out, improvement of Generator basement and field balancing. Finally the nuclear turbine-generator's shaft vibration was reduced below $60{\mu}m$ from over $200{\mu}m$ which is very excellent vibration in nuclear turbine-generator in Korea.

  • PDF

Numerical Simulation of Laminar Reacting Flows Using Unstructured Finite Volume Method With Adaptive Refinement

  • Kang, Sung-Mo;Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2001
  • A pressure-based, unstructured finite volume method has been applied to couple the chemical kinetics and fluid dynamics and to capture effectively and accurately the steep gradient flame field. The pressure-velocity coupling is handled by two methodologies including the pressure-correction algorithm and the projection scheme. A stiff, operator-split projection scheme for the detailed nonequilibrium chemistry has been employed to treat the stiff reaction source terms. The conservative form of the governing equations are integrated over a cell-centered control volume with collocated storage for all transport variables. Computations using detailed chemistry and variable transport properties were performed for two laminar reacting flows: a counterflow hydrogen-air diffusion flame and a lifted methane-air triple flame. Numerical results favorably agree with measurements in terms of the detailed flame structure.

  • PDF

A Study on the Transient Hygrothermal Stresses in an Orthotropic Hollow Cylinder (직교이방성 속빈 원통에서 과도적 흡습열 응력에 관한 연구)

  • 조환기;신근용
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.110-120
    • /
    • 1999
  • Transient hygrothermal stresses in an infinitely long hollow cylinder subjected to heating in hygroscopic environments at the surfaces are studied. The equations of hygrothermoelasticity based on the plane strain assumption are formulated by considering the coupling effects between heat and moisture. A closed form solution for the transient hygrothermal stresses is obtained by using decoupling techniques and the method of separation of variables. Numerical results including distributions of temperature and moisture concentration are presented. Effects of transient hygrothermal characteristics are clearly shown in both displacements and stress distributions in the wall of hollow cylinder.

  • PDF