• Title/Summary/Keyword: coupled stokes equations

Search Result 141, Processing Time 0.024 seconds

Numerical Analysis of Unsteady Heat Transfer for Location Selection of CPVC Piping (CPVC 배관 동파방지용 열선의 위치 선정을 위한 비정상 열전달 수치해석)

  • Choi, Myoung-Young;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.33-39
    • /
    • 2015
  • In this paper, a numerical experiment was conducted to find out the optimal location of electrical heat trace for anti-freeze of water inside the CPVC pipe for fire protection. The unsteady incompressible Navier-Stokes equations coupled with energy equation were solved. Since the conduction equation of pipe was coupled with the natural convection of water, the analysis of conjugate heat transfer was conducted. A commercial code (ANSYS-FLUENT) based on SIMPLE-type algorithm was used for investigating the unsteady flows and temperature distributions in water region. From the present numerical experiment, it has been found that the vector field of water inside the PVC pipe is opposite to the case of steel because of the huge difference of material properties of the two pipes. Furthermore, it was found that the lowest part of the pipe was an optimal position for electrical heat trace since the minimum water temperature of the case was higher than those of the other cases.

Aeroelastic Response Analysis for Wing-Body Configuration Considering Shockwave and Flow Viscous Effects (충격파 및 유동점성 효과를 고려한 항공기 날개-동체 형상에 대한 공탄성 응답)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Hwang, Mi-Hyun;Kim, Su-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.984-991
    • /
    • 2009
  • In this study, transonic aeroelastic response analyses have been conducted for the DLR-F4(wing-body) aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

Study on the Passive Shock/Boundary Layer Interaction Control in Transonic Moist Air Flow (습공기 유동에서 발생하는 충격파와 경계층 간섭의 피동제어에 관한 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.21-29
    • /
    • 2002
  • In the present study, a passive control method, using a porous wall and cavity system, is applied to the shock wave/boundary layer interactions in transonic moist air flow. The two-dimensional, unsteady, compressible, Navier-Stokes equations, which are fully coupled with a droplet growth equation, are solved by the third-order MUSCL type TVD finite difference scheme. Baldwin-Lomax model is employed to close the governing equations. In order to investigate the effectiveness of the present control method, the total pressure loss of the flow and the time-dependent behaviour of shock motions are analyzed in detail. The computed results show that the present passive control method considerably reduces the total pressure losses due to the shock wave/boundary layer interaction in transonic moist air flow and suppresses the unsteady shock wave motions over the airfoil as well. It is also found that the location of the porous ventilation significantly affects the control effectiveness.

Flutter Analysis of 2D Airfoil with Gurney Type Flap (Gurney 플랩이 장착된 2차원 익형의 플러터 해석)

  • Bae, Eui-Sung;Joo, Wan-Don;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • Flutter analysis of NACA 0012 with Gurney flap was conducted in time domain. Flutter analysis was performed with a conjunction of two governing equations; one is 2D Navier-Stokes equation and, the other is Lagrange equation of two dimensional plunge & pitch model. Both governing equations were coupled by loose-coupling method. From the computed results, the effect of Gurney flap was concluded to move the flutter boundary of NACA 0012 downward, which means flutter occurs at lower speed than that of NACA 0012. Although flutter boundary of gurney flap was above the safety margin when mach number was lower than 0.85, there might be a possibility of crossing the safety margin when mach number was between 0.85 and 0.9. For safety, the effect of gurney flap needs to be investigated carefully before using it.

UNSTEADY AERODYNAMIC ANALISES OF SPACE ROCKET CONFIGURATION CONSIDERING PITCHING MOTION (피칭운동을 고려한 우주발사체 형상의 천음속 비정상 유동해석)

  • Kim, D.H.;Kim, Y.H.;Kim, D.H.;Yoon, S.H.;Kim, G.S.;Jang, Y.H.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. Before performing the coupled fluid-structure transonic aeroealstic simulations transonic aerodynamic characteristics are investigated for the pitching motions of the rocket at finite angle-of-attack. An unsteady CFD analysis method with a moving grid technique based on the Reynolds-averaged Navier-Stokes equations with the k-w SST transition turbulence model is applied to accurately predict the transonic loads of the rocket at pitching motion. It is shown that the fluctuating amplitude of the lateral aerodynamic loads imposed on the rocket due to the pitching motion can be significantly increased in the transonic flow region.

Electrohydrodynamic Analysis of Dielectric Guide Flow Due to Surface Charge Density Effects in Breakdown Region

  • Lee, Ho-Young;Kang, In Man;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.647-652
    • /
    • 2015
  • A fully coupled finite element analysis (FEA) technique was developed for analyzing the discharge phenomena and dielectric liquid flow while considering surface charge density effects in dielectric flow guidance. In addition, the simulated speed of surface charge propagation was compared and verified with the experimental results shown in the literature. Recently, electrohydrodynamics (EHD) techniques have been widely applied to enhance the cooling performance of electromagnetic systems by utilizing gaseous or liquid media. The main advantage of EHD techniques is the non-contact and low-noise nature of smart control using an electric field. In some cases, flow can be achieved using only a main electric field source. The driving sources in EHD flow are ionization in the breakdown region and ionic dissociation in the sub-breakdown region. Dielectric guidance can be used to enhance the speed of discharge propagation and fluidic flow along the direction of the electric field. To analyze this EHD phenomenon, in this study, the fully coupled FEA was composed of Poisson's equation for an electric field, charge continuity equations in the form of the Nernst-Planck equation for ions, and the Navier-Stokes equation for an incompressible fluidic flow. To develop a generalized numerical technique for various EHD phenomena that considers fluidic flow effects including dielectric flow guidance, we examined the surface charge accumulation on a dielectric surface and ionization, dissociation, and recombination effects.

Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming

  • Khayyer, Abbas;Gotoh, Hitoshi;Falahaty, Hosein;Shimizu, Yuma;Nishijima, Yusuke
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.299-318
    • /
    • 2017
  • The paper aims at illustrating several key issues and ongoing efforts for development of a reliable fully-Lagrangian particle-based solver for simulation of hydroelastic slamming. Fluid model is founded on the solution of Navier-Stokes along with continuity equations via an enhanced version of a projection-based particle method, namely, Moving Particle Semi-implicit (MPS) method. The fluid model is carefully coupled with a structure model on the basis of conservation of linear and angular momenta for an elastic solid. The developed coupled FSI (Fluid-Structure Interaction) solver is applied to simulations of high velocity impact of an elastic aluminum wedge and hydroelastic slammings of marine panels. Validations are made both qualitatively and quantitatively in terms of reproduced pressure as well as structure deformation. Several remaining challenges as well as important key issues are highlighted. At last, a recently developed multi-scale MPS method is incorporated in the developed FSI solver towards enhancement of its adaptivity.

Numerical Simulation of Chemically Reacting Laminar and Thrbulent Flowfields Using Preconditioning Scheme (예조건화 기법을 이용한 층류 및 난류 화학반응 유동장 해석)

  • Kim Gyo-Soon;Choi Yun-Ho;Rhee Byung-Ohk;Song Bong-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.320-327
    • /
    • 2006
  • The computations of chemically reacting laminar and turbulent flows are performed using the preconditioned Navier-Stokes solver coupled with turbulent transport and multi-species equations. A low-Reynolds number $k-\varepsilon$ turbulence model proposed by Chien is used. The presence of the turbulent kinetic energy tenn in the momentum equation can materially affect the overall stability of the fluids-turbulence system. Because of this coupling effect, a fully coupled formulation is desirable and this approach is taken in the present study. Choi and Merkle's preconditioning technique is used to overcome the convergence difficulties occurred at low speed flows. The numerical scheme used for the present study is based on the implicit upwind ADI algorithm and is validated through the comparisons of computational and experimental results for laminar methane-air diffusion flame and $ H_2/O_2$ reacting turbulent shear flow. Preconditioning formulation shows better convergence characteristics than that of non-preconditioned system by approximately five times as much.

Numerical Simulation of Erosion Rate on Pipe Elbow Using Coupled Behavior of Fluid and Particle (유체-입자 연성 운동에 의한 굽힘형 배관의 침식률 수치해석)

  • Jang, Ho-Sang;Lee, Hawon;Hwang, Se-Yun;Lee, Jang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • The erosion of solid particles in a pipe elbow was numerically investigated. A numerical procedure to estimate the sand erosion rate, as well as the particle motion, in the pipe elbow flow was introduced. This procedure was performed based on the combined empirical erosion model and computational fluid dynamics (CFD) analysis to consider the interaction between the particle motion and the eroded surface. The underlying turbulent flow on an Eulerian frame is described by the Reynolds averaged Navier-Stokes (RANS) equations with a $k-{\epsilon}$ turbulent model. The one-way coupled Eulerian-Lagrangian motion of the air flow and sand particles is employed to simulate the particle trajectories and particle-wall interactions on the pipe surfaces. The predicted CFD erosion magnitudes are compared with experimental data from pipe elbows. The erosion rate results do not reveal a good accordance between the simulation and experimental results. It seems that the CFD shows a slightly over-predicted erosion ratio.

BLOCKAGE EFFECT ON FLOWS AROUND A ROTATIONALLY OSCILLATING CIRCULAR CYLINDER (회전 진동하는 원형실린더 주위 유동의 폐쇄효과 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.33-38
    • /
    • 2008
  • For study on the unsteady blockage effect, flows around a rotationally oscillating circular cylinder with relatively low forcing frequency in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The computed results of the oscillating cylinder in the test section showed that the fluctuations of lift and drag are augmented by the blockage effects. The drag further increases because of low base pressure. The pressure on the test section wall shows the harmonics having the oscillating and the shedding frequencies contained in the blockage effect.