• 제목/요약/키워드: coupled model

검색결과 2,664건 처리시간 0.027초

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.

복합모델을 이용한 CNG 복합재 압력용기 최적설계 (Optimal Design for CNG Composite Vessel Using Coupled Model with Liner and Composite Layer)

  • 배준호;이현우;김문생;김철
    • 한국정밀공학회지
    • /
    • 제29권9호
    • /
    • pp.1012-1019
    • /
    • 2012
  • In this study, CNG composite vessel is analyzed by using coupled model with liner and composite layer. For the coupled model, a method using theoretical analysis and FEA is suggested: elastic solution for laminated tube is used for theoretical analysis of the composite vessel, FEA is performed to the model of CNG composite vessel in actual conditions. On the basis of these results, optimal thickness and winding angle of the composite layer considering the material properties and thickness of the liner are determined. The results of theoretical analysis and FEA are compared with those carried out in previous studies for verifying the suggested analysis method.

연계 후류진동 모델 적용을 통한 와류방출 가진에 의한 라이저의 동적해석 (Dynamic Analysis of Riser with Vortex Excitation by Coupled Wake Oscillator Model)

  • 홍남식;허택녕
    • 한국해안해양공학회지
    • /
    • 제12권3호
    • /
    • pp.109-115
    • /
    • 2000
  • 면내 조류흐름에 의해 발생하는 와류방출 가진으로 인한 라이저의 동적거동해석을 위한 수치해석 모델을 개발한다. 수치해석 모델개발을 위해 Galerkin의 유한요소 근사화법을 적용하였으며 와류방출 가진은 Blevins에 의해 제안된 연계 후류진동 모델을 사용하였다. 와류방출로 인한 라이저의 일반적인 거동특성을 수치해석 결과와 비교분석함으로써 모델의 유용성을 검증하였다.

  • PDF

솔리드모델과 2D 연성모델을 사용한 브레이크 디스크의 열해석 (The Thermal Analysis of Brake Disc using the Solid Model and 2D Coupled Model)

  • 강상욱;김창진;이대희;김흥섭
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.93-100
    • /
    • 2003
  • This paper describes the thermoelastic instability arising from friction heat generation in braking and proposes the finite element methods to predict the variation of temperature and thermal deformation. In a conventional disc brake analysis, heat generation is only related with wheel speed and friction material and the interface pressure between disc and pad is assumed constant. But under dynamic braking conditions, the frictional heat causes the thermoelastic distortion that leads to more concentrated contact pressure distribution and hence more and more non-uniform temperature. In this paper, to complete the solution of the thermomechanically coupled problem, the linear relation model between pressure and temperature is proposed and demonstrated in examples of a simple two dimensional contact problem. And the two dimensional model has been extended to an annular three dimensional disc model in order to consider more realistic geometry and to provide a more accurate critical speed for automotive brake systems.

Seismic assessment of steel structures through a cumulative damage

  • Perera, R.;Gomez, S.;Alarcon, E.
    • Steel and Composite Structures
    • /
    • 제1권3호
    • /
    • pp.283-294
    • /
    • 2001
  • In the present work a constitutive model is developed which permits the assessment of the structural performance through a criterion based on cumulative damage. For it, a damage index is defined and is evaluated through the application of the Miner's rule in low-cycle fatigue. However, the damage index is not considered as a posteriori variable since is incorporated explicitly as an internal variable in the constitutive equations which produces a direct coupling between the damage and the structural mechanical behaviour allowing the possibility of considering as a whole different coupled phenomena. For the elaboration of this damage model, the concepts of the mechanics of continuum medium are applied on lumped dissipative models in order to obtain a coupled simplified model. As a result an elastoplastic model coupled with damage and fatigue damage is obtained.

DEVELOPMENT AND VALIDATION OF COUPLED DYNAMICS CODE 'TRIKIN' FOR VVER REACTORS

  • Obaidurrahman, K.;Doshi, J.B.;Jain, R.P.;Jagannathan, V.
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.259-270
    • /
    • 2010
  • New generation nuclear reactors are designed using advanced safety analysis methods. A thorough understanding of different interacting physical phenomena is necessary to avoid underestimation and overestimation of consequences of off-normal transients in the reactor safety analysis results. This feature requires a multiphysics reactor simulation model. In this context, a coupled dynamics model based on a multiphysics formulation is developed indigenously for the transient analysis of large pressurized VVER reactors. Major simplifications are employed in the model by making several assumptions based on the physics of individual phenomenon. Space and time grids are optimized to minimize the computational bulk. The capability of the model is demonstrated by solving a series of international (AER) benchmark problems for VVER reactors. The developed model was used to analyze a number of reactivity transients that are likely to occur in VVER reactors.

CNC 공작기계에서 상호결합제어기를 위한 새로운 윤곽오차모델 (A New Contour Error Model for Cross-Coupled Controller in CNC Machine Tools)

  • 이재하;양승한
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.152-157
    • /
    • 2000
  • In the control of CNC machine tools, it is significant for precise machining to reduce the contour error. The object of servo-control is reduction of contour error and tracking error. In past studies, there were two approaches to control a servo-system. One was to eliminate axial tracking errors, and the other was to control contour errors. The Cross-coupled controller(CCC) was introduced fro ma veiwpoint of contour error model. Recently, for machining part with free form surfaces, we propose a new contour error model based on curve interpolator. It is presented here that performance of CCC using proposed model is enhanced. Therefore, we can make more precise parts with the curve interpolator and the new contour error model.

  • PDF

Accuracy analysis of flood forecasting of a coupled hydrological and NWP (Numerical Weather Prediction) model

  • Nguyen, Hoang Minh;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.194-194
    • /
    • 2017
  • Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.

  • PDF

Ground-Coupled 바닥구조체의 열전달 모델링 (An Approach to Model Ground-Coupled Building Foundation for Energy Simulation)

  • 임병찬
    • 설비공학논문집
    • /
    • 제16권7호
    • /
    • pp.658-666
    • /
    • 2004
  • In this paper, a two-dimensional transient ground-coupled numerical model for slab-on-grade foundation is developed and integrated into EnergyPlus. A validation analysis is first presented to ensure that for the developed building foundation heat transfer module is properly implemented within EnergyPlus. Then, the predictions from the developed model are compared to those obtained from the simplified building foundation model currently used in EnergyPlus. The results show that the developed foundation heat transfer module accounts better for the effects of the ground thermal mass attributed to the ground than the simplified foundation model currently used in EnergyPlus.

불투과 잠제 전면에서 파랑 작용 하의 세굴 해석을 위한 수치모델의 개발 (Development of Numerical Model for Scour Analysis under Wave Loads in Front of an Impermeable Submerged Breakwater)

  • 허동수;전호성
    • 대한토목학회논문집
    • /
    • 제31권5B호
    • /
    • pp.483-489
    • /
    • 2011
  • 본 연구에서는 잠제 주변의 세굴 및 퇴적현상을 수치적으로 모의하기 위해 기존의 수치 파동 모델에 모래입자의 거동 해석을 위한 lagrangian 입자 모델을 결합한 새로운 수치모델을 개발하였다. 수치 파동 모델로서는 파랑에 의한 해저지반 내의 모래입자의 이동과 유동화 해석을 위해 투수성 매체 내부의 유체저항(관성저항, 층류저항 및 난류저항)을 고려할 수 있는 수치모델에 LES 난류모델을 도입한 수치해석기법(허와 최, 2008)을 이용하였다. 또한, 모래입자의 이동해석을 위한 lagrangian 입자 모델로서는 많은 개개의 입자들의 동적해석에 탁월한 개별요소법(Cundall and Strack, 1979)을 적용하였다. 개발된 해석기법을 이용하여 불투과 잠제 전면의 세굴에 대한 수치시뮬레이션을 실시한 후, 기존의 수리모형실험과 정성적으로 비교하면서 그 적용성을 검토하였다.