• 제목/요약/키워드: coupled model

검색결과 2,670건 처리시간 0.03초

조석-해일 결합모형의 범람 적용성 (Applicability of Inundation Simulation with the Coupled Tide-Surge Model)

  • 박선중;강주환;윤종태;정태성
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제13권4호
    • /
    • pp.270-278
    • /
    • 2010
  • 선행연구에서 우리나라 남해안을 대상으로 상용모형인 MIKE21 모형을 사용하여 실시간 조석 및 조석-해일 결합모형을 수립하였다. 본 연구에서는 이를 토대로 마산해역에서 범람모의에 대한 적용성을 검토하였다. 실제 적용에 앞서 가상적인 인공구조물의 범람에 대한 영향성 분석을 시행하였다. 범람 모의에 인공구조물을 포함시킨 결과 침수속도가 지체되어 침수면적이 감소하고 있는 반면 침수심은 별 차이를 보이지 않고 있다. 한편 실해역에 대한 결합모형과 폭풍해일모형의 범람 적용을 비교한 결과, 침수면적과 침수심은 유사한 결과를 보이고 있는 반면 최대 범람에 이르는 시간은 결합모형이 보다 타당한 결과를 나타내고 있다.

Ride comfort of the bridge-traffic-wind coupled system considering bridge surface deterioration

  • Liu, Yang;Yin, Xinfeng;Deng, Lu;Cai, C.S.
    • Wind and Structures
    • /
    • 제23권1호
    • /
    • pp.19-43
    • /
    • 2016
  • In the present study, a new methodology is presented to study the ride comfort and bridge responses of a long-span bridge-traffic-wind coupled vibration system considering stochastic characteristics of traffic flow and bridge surface progressive deterioration. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) including a three-dimensional non-linear suspension seat model and the longitudinal vibration of the vehicle is firstly presented to study the ride comfort. An improved cellular automaton (CA) model considering the influence of the next-nearest neighbor vehicles and a progressive deterioration model for bridge surface roughness are firstly introduced. Based on the equivalent dynamic vehicle model approach, the bridge-traffic-wind coupled equations are established by combining the equations of motion of both the bridge and vehicles in traffic using the displacement relationship and interaction force relationship at the patch contact. The numerical simulations show that the proposed method can simulate rationally the ride comfort and bridge responses of the bridge-traffic-wind coupled system; and the vertical, lateral, and longitudinal vibrations of the driver seat model can affect significantly the driver's comfort, as expected.

개구부로 연결된 3중 커플룸의 음향특성 (Acoustic Properties of Three-room Coupled System by Connected Two Apertures)

  • 나혜중;임병덕
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.340-349
    • /
    • 2016
  • A coupled room system consists of adjacent rooms and apertures where the sound energy is exchanged between the two rooms. Acoustically, a coupled room system shows a non-exponential decay profile. Most of the related researches have been to analyze the acoustic properties of two-room coupled system so far whereas three-room coupled system were seldom studied. In this regard, this paper aims to analyse the distribution of sound pressure level, sound decay curve of three-room coupled system and sound energy flow between them by using the acoustic diffusion model and to further verify them through experiments. Firstly, the sound pressure level distribution and mean sound pressure level in the steady-state condition are analyzed at various frequencies and source locations. Good agreements are observed in both experiments and analysis results. Secondly, two double slope effect quantifiers of sound attenuation, LDT/EDT and LDT/T10 are compared at various frequencies and for different source locations. The result indicates that LDT/T10, less affected by the early reflection patterns than LDT/EDT, is more suitable to the analysis and experiments of a multi-slope sound decay curve. Lastly, the sound energy flow in each room is analyzed based on the acoustic diffusion model. After the early decay stage, the sound energy is observed to flow from the room with a long reverberation time to the room with a short one.

해양대순환모형을 이용한 해빙의 역할에 관한 수치실험 연구 (Numerical Study on the Role of Sea-ice Using Ocean General Circulation Model)

  • 이진아;안중배
    • 한국해양학회지:바다
    • /
    • 제6권4호
    • /
    • pp.225-233
    • /
    • 2001
  • 본 연구에서는 기후 시스템 내에서의 해빙의 역할을 살펴보고자 열역학적 방식에 의한 해빙 모형을 개발하고 이를 해양대순환 모형인 MOM에 접합한 해양/해빙 접합 모형을 구축하여 수치적 실험을 하였다. 연구에서는 먼저 접합한 모형을 이용하여 해빙의 계절 평균적인 분포를 모사하였다. 또한 해양대순환 모형이 해빙 모형과 접합한 경우와 접합하지 않은 경우를 비교함으로써 대규모 해양 분포에 나타나는 해빙의 역할을 살펴보았다. 또한 모형의 결과를 다른 모형의 결과 및 관측자료와 비교 분석함으로써 해양/해빙 모형 접합 모형의 결과를 검증하였다. 접합 모형은 양반구 고위도에서의 해빙이 계절적 분포를 전체적으로 적절히 모사하였다. 해양대순환 모형이 해빙 모형과 접합한 경우와 그렇지 않은 경우에 대한 비교 연구에서 해빙은 양반구 고위도에서의 해수온과 염분을 유지시켜주는 중요한 역할을 할뿐만 아니라 South Ocean 순환세포와 남반구 순환세포(Southern Hemisphere circulation cell) 및 북대서양 심층수와 관련한 자오 심해 순환과 남극환류 같은 동서류의 순환도 적절히 모사하였다.

  • PDF

조석-해일 결합모형의 적용성 검토 (Applicability of Coupled Tide-Surge Model)

  • 박선중;강주환;김양선;문승록
    • 한국해안·해양공학회논문집
    • /
    • 제22권4호
    • /
    • pp.248-257
    • /
    • 2010
  • 본 연구에서는 조석과 해일이 결합된 범람모의 적용에 앞서 적용모형인 MIKE21 모형의 실시간 조석 및 조석-해일 결합모의에 대한 적용성을 검토하였다. 실시간 조석모의에 대한 적용성 검토결과, 한반도 주변해역을 모두 포함하는 광대역에 대한 모의결과임에도 만족스러운 결과를 보였다. 조석-해일 결합모의에 있어서도 전반적으로 높은 정도로 태풍 MAEMI(0314) 내습 당시의 수위 상승 양상의 재현이 가능하였을 뿐 아니라 태풍 MAEMI가 상륙한 통영, 마산, 부산 해역의 경우 관측조위와 정량적으로 매우 근접한 모의 결과를 획득할 수 있었다. 또한 조석의 영향이 강하고 수심이 복잡한 목포해역 일대에서는 조석과 해일 상호간의 비선형 효과가 크게 작용하고 있음을 확인할 수 있었고, 이에 따라 특히 서남해안에서의 조석-해일 결합모형의 효용성을 입증할 수 있었다.

동시 이중주파수를 이용한 기어 열처리의 열·전자기 연성 해석 (Thermal-electromagnetic Coupled Analysis for Gear Heat Treatment using Simultaneous Duel Frequency)

  • 윤동원;박희창;함상용;구정회
    • 한국정밀공학회지
    • /
    • 제32권6호
    • /
    • pp.563-570
    • /
    • 2015
  • In this paper, Finite Element Analysis (FEA) for gear heat treatment using simultaneous dual frequency (SDF) induction heating is conducted. To do this, thermal-electromagnetic coupled FE model is built. A two dimensional FE model of gear and heater is introduced to reduce computation time. For more time-efficient analysis, harmonic analysis for electromagnetic model is adopted and transient analysis model, for heat transfer model. Through the coupled analysis, it can be found that the proposed FE model can solve for SDF induction heating of gear and heat treatment parameters can also be determined.

접합모형을 이용한 경년 및 계절안 진동 모사실험 연구 (On the Study of Intraseasonal and Interannual Oscillations Simulation by using Coupled Model)

  • 안중배
    • 한국환경과학회지
    • /
    • 제8권6호
    • /
    • pp.645-652
    • /
    • 1999
  • In order to simulate and investigate the major characteristics of El Nino/Southern Oscillation(ENSO) and Madden Jullian Oscillation(MJO), an intermediate type atmosphere-ocean coupled model is developed and their results are examined. The atmosphere model is a time-dependent non-linear perturbation moist model which can determine the internal heating for itself. The counterpart of the atmosphere model is GCM-type tropical ocean model which has fine horizontal and vertical grid resolutions. In the coupled experiment, warm SST anomaly and increased precipitation and eastward wind and current anomalies associated with ENSO and MJO are properly simulated in Pacific and Indian Oceans. In spite of some discrepancies in simulation MJO, the observed atmospheric and oceanic low-frequency characteristics in the tropics are successfully identified. Among them, positive SST anomalies centered at the 100m-depth of tropical eastern-central Pacific due to the eastward advection of warm water and reduced equatorial upwelling, and negative anomalies in the Indian and western Pacific seem to be the fundamental features of tropical low-frequency oscillations.

  • PDF

정상 간섭 익렬 계산 모델을 용한 1단 축류 송풍기의 성능 예측 (Performance Prediction of the 1-Stags Axial Fan using Steady Coupled Blade Row Calculation Model)

  • 손상범;주원구;조강래
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.49-54
    • /
    • 1998
  • The flow inside an axial turbomachinery with multi-stage can be characterized as unsteady phenomena. In order to predict accurately these complex unsteady flow patterns including rotor-stator interaction effects, enormous computer resources are required. So it is not compatible in preliminary design process. In this study, steady coupled blade row flow with rotor-stator interaction solver is developed using interrow mixing model and used to predict the performance of the axial fan. To verify the computational method, the calculations are compared with experimental results and show satisfactory agreement with them. The interaction effects on the performance of the axial fan have also been studied by comparing the results of steady coupled blade row and steady single blade row flow calculation.

  • PDF

Computational Study to Understand the Cardiac Electromechanical Responses in LBBB and RBBB to the Application of CRT and LVAD

  • Heikhmakhtiar, Aulia Khamas;Lim, Ki Moo
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.650-652
    • /
    • 2017
  • the aim of this study was to observe the combined effect of the CRT and LVAD on electromechanical cardiac behavior under LBBB and RBBB conditions computationally. We performed simulation by using advanced electromechanics model of failing ventricle combined with lumped model represents circulatory system, CRT and LVAD. We analyzed seven failing ventricle model including normal sinus rhythm, LBBB, LBBB coupled with CRT, LBBB coupled with CRT and LVAD, RBBB, RBBB coupled with CRT, and RBBB coupled with CRT and LVAD. We compared the effect from CRT and the effect from combined CRT and LVAD to both under LBBB and RBBB conditions. The results showed that the combined CRT and LVAD contributed a better hemodynamic compared to single CRT. This combined system synchronized the electrical activation greatly under LBBB and slightly under RBBB. It also shortened mechanical activation time which resulted short electromechanical delay. More importantly, the combined system produced better mechanical responses under both LBBB and RBBB conditions.

  • PDF

Advanced Forecasting Approach to Improve Uncertainty of Solar Irradiance Associated with Aerosol Direct Effects

  • Kim, Dong Hyeok;Yoo, Jung Woo;Lee, Hwa Woon;Park, Soon Young;Kim, Hyun Goo
    • 한국환경과학회지
    • /
    • 제26권10호
    • /
    • pp.1167-1180
    • /
    • 2017
  • Numerical Weather Prediction (NWP) models such as the Weather Research and Forecasting (WRF) model are essential for forecasting one-day-ahead solar irradiance. In order to evaluate the performance of the WRF in forecasting solar irradiance over the Korean Peninsula, we compared WRF prediction data from 2008 to 2010 corresponding to weather observation data (OBS) from the Korean Meteorological Administration (KMA). The WRF model showed poor performance at polluted regions such as Seoul and Suwon where the relative Root Mean Square Error (rRMSE) is over 30%. Predictions by the WRF model alone had a large amount of potential error because of the lack of actual aerosol radiative feedbacks. For the purpose of reducing this error induced by atmospheric particles, i.e., aerosols, the WRF model was coupled with the Community Multiscale Air Quality (CMAQ) model. The coupled system makes it possible to estimate the radiative feedbacks of aerosols on the solar irradiance. As a result, the solar irradiance estimated by the coupled system showed a strong dependence on both the aerosol spatial distributions and the associated optical properties. In the NF (No Feedback) case, which refers to the WRF-only stimulated system without aerosol feedbacks, the GHI was overestimated by $50-200W\;m^{-2}$ compared with OBS derived values at each site. In the YF (Yes Feedback) case, in contrast, which refers to the WRF-CMAQ two-way coupled system, the rRMSE was significantly improved by 3.1-3.7% at Suwon and Seoul where the Particulate Matter (PM) concentrations, specifically, those related to the $PM_{10}$ size fraction, were over $100{\mu}g\;m^{-3}$. Thus, the coupled system showed promise for acquiring more accurate solar irradiance forecasts.