• 제목/요약/키워드: coupled hidden Markov model

검색결과 3건 처리시간 0.015초

Chow-Liu Tree 모형과 동질성 Hidden Markov Model을 연계한 다지점 일강수량 모의기법 개발 (Development of Multi-Site Daily Rainfall Simulation Based on Homogeneous Hidden Markov Chain Model Coupled with Chow-Liu Tree Structures)

  • 권현한;김태정;김운기;이동률
    • 한국수자원학회논문집
    • /
    • 제46권10호
    • /
    • pp.1029-1040
    • /
    • 2013
  • 본 연구에서는 유역의 공간상관성을 고려한 다지점 일단위 강수량을 동시에 모의할 수 있는 일강수량 모의기법을 개발하였다. 기존 Hidden Markov Chain Model(HMM)은 단일지점 강수모의에 적용되어 왔으나 관측지점간의 유역상관성을 충분히 고려하지 못하는 문제점을 가지고 있다. 따라서 본 연구에서는 Chow-Liu Tree (CLT) 모형을 적용하여 다변량(multivariate) 형태로써 유역내에 위치한 강우관측소간의 상호종속성을 고려하기 위하여 기존의 동질성 HMM 강우모의기법과 CLT 알고리즘을 결합한 동질성 CLT-HMM 모형을 개발하였다. 본 연구에서 개발된 동질성 CLT-HMM 모형을 사용하여장기간의수문자료를보유하고있는기상청산하의한강유역강수네트워크에대해서 적합성을 검토하였다. 동질성 CLT-HMM 모형을 적용하여 모의된 결과를 보면 일강수량의 계절적 특성뿐만 아니라 일강수량모의 시 강수시계열의 통계적인 특성들까지 우수하게 모의하였다. 추가적으로 상관행렬(correlation matrix)을 이용하여 기상관측소간의 공간상관 재현성을 검토한 결과 관측지점들 사이의 공간상관성도 비교적 우수하게 재현하는 것을 확인할 수 있었다.

동적 베이스망 기반의 양손 제스처 인식 (Dynamic Bayesian Network based Two-Hand Gesture Recognition)

  • 석흥일;신봉기
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권4호
    • /
    • pp.265-279
    • /
    • 2008
  • 손 제스처를 이용한 사람과 컴퓨터간의 상호 작용은 오랜 기간 많은 사람들이 연구해 오고 있으며 커다란 발전을 보이고 있지만, 여전히 만족스러운 결과를 보이지는 못하고 있다. 본 논문에서는 동적 베이스망 프레임워크를 이용한 손 제스처 인식 방법을 제안한다. 유선 글러브를 이용하는 방법들과는 달리, 카메라 기반의 방법에서는 영상 처리와 특징 추출 단계의 결과들이 인식 성능에 큰 영향을 미친다. 제안하는 제스처 모델에서의 추론에 앞서 피부 색상 모델링 및 검출과 움직임 추적을 수행한다. 특징들간의 관계와 새로운 정보들을 쉽게 모델에 반영할 수 있는 동적 베이스망을 이용하여 두 손 제스처와 한 손 제스처 모두를 인식할 수 있는 새로운 모델을 제안한다. 10가지 독립 제스처에 대한 실험에서 최대 99.59%의 높은 인식 성능을 보였다. 제안하는 모델과 관련 방법들은 수화 인식과 같은 다른 문제들에도 적용 가능할 것으로 판단된다.

신경회로망과 유전알고리즘을 이용한 근전신호 인식기법 (A Study on Electromyogram Signals Recognition Technique using Neural Network and Genetic Algorithms)

  • 신철규;이상민;이은실;권장우;장영건;홍승홍
    • 전자공학회논문지S
    • /
    • 제35S권11호
    • /
    • pp.176-183
    • /
    • 1998
  • 본 논문에서는 근전신호를 효과적으로 인식하기 위해 신경회로망에 유전알고리즘을 결합하여 근전신호를 인식하는 기법을 제안한다. 본 기법은 신경회로망이 내재한 단점들을 개선하여 근전신호의 인식률을 높이고 안정적인 인식을 행하는 것을 목표로 한다. 제안된 기법에서 유전알고리즘은 전역적인 탐색으로 신경회로망의 최적의 초기 연결강도를 선택하는데, 이로 인하여 학습속도 및 인식률이 향상하게 된다. 그리고 절대 적분치, 영교차수등의 특징벡터 이외에 히든 마르코프 모델로 전처리를 하여 시간적으로 변하는 근전신호의 특성을 입력패턴에 반영하였다. 6가지의 기본운동을 대상으로 행한 실험결과, 제안된 인식기법은 기존의 일반적인 신경회로망의 학습규칙을 이용하여 인식했을 때보다 학습속도와 인식률이 향상되었고, 국부최소점으로 수렴하는 경우가 없어 실험에 실패하지 않고 안정적으로 근전신호의 패턴을 인식하였다.

  • PDF