• Title/Summary/Keyword: coupled finite and boundary element method

Search Result 176, Processing Time 0.02 seconds

Acoustic field simulation of a PZT4 disc projector using a coupled FE-BE method

  • Jarng, S.S.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.211-218
    • /
    • 1999
  • This paper describes the application of a coupled finite element-boundary element method (FE-BEM) to obtain the steady-state response of a piezoelectric transducer. The particular structure considered is a PZT4 disc-typed projector. The projector is three-dimensionally simulated to transduce applied electric charge on axial surfaces of the piezoelectric disc to acoustic pressure in air or in water. The directivity pattern of the acoustic field formed from the projected sound pressure is also simulated. And the displacement of the disc caused by the externally applied electric charge is shown in temporal motion. The coupled FE-BE method is described in detail.

  • PDF

The coupling of complex variable-reproducing kernel particle method and finite element method for two-dimensional potential problems

  • Chen, Li;Liew, K.M.;Cheng, Yumin
    • Interaction and multiscale mechanics
    • /
    • v.3 no.3
    • /
    • pp.277-298
    • /
    • 2010
  • The complex variable reproducing kernel particle method (CVRKPM) and the FEM are coupled in this paper to analyze the two-dimensional potential problems. The coupled method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, resulting in improved computational efficiency. A hybrid approximation function is applied to combine the CVRKPM with the FEM. Formulations of the coupled method are presented in detail. Three numerical examples of the two-dimensional potential problems are presented to demonstrate the effectiveness of the new method.

PZT4 Sonar Shell transmitter Simulation Using a Coupled FE-BE Method

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.14-19
    • /
    • 1998
  • This article describes the application of a coupled finite element-boundary element method to obtain the steady-state response of a sonar transducer. The sonar shell is simulated to be driven by electrical charges applied onto inner and outer surfaces of the shell. It is shown that at relatively low input frequency a beam pattern which is almost close to omnidirection can be obtained. The coupled FE-BE method is described in detail.

  • PDF

AN ASYMPTOTIC FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION TYPE WITH DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1057-1069
    • /
    • 2008
  • We consider singularly perturbed Boundary Value Problems (BVPs) for third and fourth order Ordinary Differential Equations(ODEs) of convection-diffusion type with discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions(BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equation does not have the small parameter but the second contains it. In this paper a computational method named as 'An asymptotic finite element method' for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a fitted mesh Finite Element Method (FEM). Numerical experiments support our theoritical results.

  • PDF

Coupled Thermal/Structural Analysis of Mechanical Ablation by Domain/Boundary Decomposition Method (영역/경계 분할법을 적용한 기계적 삭마 과정의 열구조 연계 해석)

  • Shin, Eui-Sup;Kim, Sung-Jun;Kim, Jong-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • A coupled thermal/structural analysis of mechanical ablation is performed based on domain/boundary decomposition and finite element method. The ablative material non-linearity and boundary non-linearity can be easily localized within a few subdomains and/or on the boundary interfaces. An enthalpy method is applied to simplify the effect of heat of pyrolysis in the ablative subdomains. In addition, maximum in-plane shear stress is considered as a surface recession criterion for the mechanical ablation simulation. The basic characteristics of the proposed method are examined carefully through numerical experiments.

A novel coupled finite element method for hydroelastic analysis of FG-CNTRC floating plates under moving loads

  • Nguyen, Vu X.;Lieu, Qui X.;Le, Tuan A.;Nguyen, Thao D.;Suzuki, Takayuki;Luong, Van Hai
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.243-256
    • /
    • 2022
  • A coupled finite element method (FEM)-boundary element method (BEM) for analyzing the hydroelastic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) floating plates under moving loads is firstly introduced in this article. For that aim, the plate displacement field is described utilizing a generalized shear deformation theory (GSDT)-based FEM, meanwhile the linear water-wave theory (LWWT)-relied BEM is employed for the fluid hydrodynamic modeling. Both computational domains of the plate and fluid are coincidentally discretized into 4-node Hermite elements. Accordingly, the C1-continuous plate element model can be simply captured owing to the inherent feature of third-order Hermite polynomials. In addition, this model is also completely free from shear correction factors, although the shear deformation effects are still taken into account. While the fluid BEM can easily handle the free surface with a lower computational effort due to its boundary integral performance. Material properties through the plate thickness follow four specific CNT distributions. Outcomes gained by the present FEM-BEM are compared with those of previously released papers including analytical solutions and experimental data to validate its reliability. In addition, the influences of CNT volume fraction, different CNT configurations, water depth, and load speed on the hydroelastic behavior of FG-CNTRC plates are also examined.

Coupled Nonlinear Finite Element-Boundary Element Analysis of Nuclear Waste Storage Structures Considering Infinite Boundaries (비선형 유한요소-경계요소 조합에 의한 핵폐기구조체의 무한영역해석)

  • 김문겸;허택녕
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.89-98
    • /
    • 1993
  • As the construction of nuclear power plants are increased, nuclear wastes disposal has been faced as a serious problem. If nuclear wastes are to be buried in the underground stratum, thermo-mechanical behavior of stratum must be analyzed, because high temperature distribution has a significant effect on tunnel and surrounding stratum. In this study, in order to analyze the structural behavior of the underground which is subject to concentrated heat sources, a coupling method of nonlinear finite elements and linear boundary elements is proposed. The nonlinear finite elements (NFE) are applied in the vicinity of nuclear depository where thermo-mechanical stress is concentrated. The boundary elements are also used in infinite domain where linear behavior is expected. Using the similar method as for the problem in mechanical field, the coupled nonlinear finite element-boundary element (NFEBE) is developed. It is found that NFEBE method is more efficient than NFE which considers nonlinearity in the whole domain for the nuclear wastes depository that is expected to exhibit local nonlinearity behavior. The effect of coefficients of the rock mass such as Poisson's ratio, elastic modulus, thermal diffusivity and thermal expansion coefficient is investigated through the developed method. As a result, it is revealed that the displacements around tunnel are largely dependent on the thermal expansion coefficients.

  • PDF

Stress-Pore Pressure Coupled Finite Element Modeling of NATM Tunneling (NATM 터널의 응력-간극수압 연계 유한요소모델링)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.5-20
    • /
    • 2006
  • This paper concerns the finite element (FE) modeling approach for NATM tunneling in water bearing ground within the framework of stress-pore pressure coupled analysis. Fundamental interaction mechanism of ground and groundwater lowering was first examined and a number of influencing factors on the results of coupled FE analysis were identified. A parametric study was then conducted on the influencing factors such as soil-water characteristics, location of hydraulic boundary conditions, the way of modeling drainage flow, among others. The results indicate that the soil-water characteristics play the most important role in the tunneling-induced settlement characteristics. Based on the results, modeling guidelines were suggested for stress-pore pressure coupled finite element modeling of NATM tunneling.

Seismic Response Analysis of Dam-Reservoir System Using Hybrid Method (Hybrid 방법에 의한 댐-호소수 계 지진응답해석)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.163-170
    • /
    • 1998
  • The influence of the dam-reservoir interaction on the seismic response of dams is studied. The impounded water is assumed to be inviscid and compressible ideal fluid. Material damping is introduce to simulate the energy loss of wave propagation in the water. The irregular region of the impounded water adjacent to the dam is modeled by boundary element method. The regular region extending to infinity is modeled by the transmitting boundary. The dam body is assumed to behave elastically and modeled by finite element method. The coupled equation of motion is obtained by substructure method.

  • PDF

Development of Three-Dimensional Layered Finite Element for Thermo-Mechanical Analysis (열 및 응력 해석용 3차원 적층 유한요소의 개발)

  • Jo, Seong-Su;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1785-1795
    • /
    • 2001
  • A multi-layered brick element fur the finite element method is developed for analyzing the three-dim-ensionally layered composite structures subjected to both thermal and mechanical boundary conditions. The element has eight nodes with one degree of freedom for the temperature and three for the display-ements at each node, and can contain arbitrary number of layers with different material properties with-in the element; the conventional element should contain one material within an element. Thus the total number of nodes and elements, which are needed to analyze the multi-layered composite structures, can be tremendously reduced. In solving the global equation, a partitioning technique is used to obtain the temperature and the displacements which are caused by both the mechanical boundary conditions and temperature distributions. The results by using the developed element are compared wish the commercial package, ANSYS and the conventional finite element methods, and they are in good agreement. It is also shown that the Number of nodes and elements can be tremendously reduced using the element without losing the numerical accuracies.