• Title/Summary/Keyword: coupled curved beams

Search Result 15, Processing Time 0.017 seconds

Free Vibration Analysis of Horizontally Curved I-Girder Bridges using the Finite Element Method (유한요소법을 이용한 수평곡선 I형교의 자유진동해석)

  • Yoon, Ki Yong;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.47-61
    • /
    • 1998
  • The behavior of horizontally curved I-girder bridges is complex because the flexural and torsional behavior of curved girders are coupled due to their initial curvature. Also, the behavior is affected by cross beams. To investigate the behavior of horizontally curved I-girder bridges, it is necessary to consider curved girders with cross beams. In order to perform free vibration analyses of horizontally curved I-girder bridges, a finite element formulation is presented here and a finite element analysis program is developed. The formulation that is presented here consists of curved and straight beam elements, including the warping degree of freedom. Based on the theory of thin-walled curved beams, the shape functions of the curved beam elements are derived from homogeneous solutions of the static equilibrium equations. Third-order hermits polynomials are used to form the shape functions of the straight beam elements. In the finite element analysis program, global stiffness and mass matrix are composed, based on the Cartesian coordinate system. The Gupta method is used to efficiently solve the eigenvalue problem. Comparing the results of several examples here with those of previous studies, the formulation presented is verified. The validity of the program developed is shown by comparing results with those analyzed by the shell element.

  • PDF

Elastic stability analysis of curved steel rib using differential quadrature method (DQM) (미분 구적법 (DQM)을 이용한 곡선 강지보의 안정성 해석)

  • Kang, Ki-Jun;Kim, Byeong-Sam;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.279-290
    • /
    • 2004
  • The differential quadrature method (DQM) for a system of coupled differential equations governing the elastic stability of thin-walled curved members is presented, and is applied to computation of the eigenvalues of out-of-plane buckling of curved beams subjected to uniformly distributed radial loads including a warping contribution. Critical loads with warping, which were found to be significant, are calculated for a single-span wide-flange beam with various end conditions, opening angles, and stiffness parameters. The results are compared with the exact methods available. New results are given for the case of both ends clamped and clamped-simply supported ends without comparison since no data are available The differential quadrature method gives good accuracy and stability compared with previous theoretical results.

  • PDF

Spatial Free Vibration and Stability Analysis of Thin-Walled Arches with Variable Curvature (곡률이 변하는 박벽 아치의 3차원 자유진동 및 좌굴해석)

  • 서광진;민병철;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.169-176
    • /
    • 1999
  • An improved formulation for spatial stability md free vibration of thin-walled curved beams with variable curvature and non-symmetric cross sections are presented based on the displacement field considering the second order terms of finite semitangential rotations. By introducing Vlasov's assumptions, the total potential energy is derived from the principle of linearized virtual work for a continuum. In this formulation, all displacement parameters and the warping function are defined at the centroid axis so that the coupled terms of bending and torsion are added to the elastic strain energy. Also, the potential energy due to initial stress resultants is consistently derived corresponding to the semitangential rotation and moment. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. In order to illustrate the accuracy and practical usefulness of this study, . numerical solutions for free vibration of arches are presented and compared with resells of other researchers and solutions analyzed by the ABAQUS's shell element.

  • PDF

A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities

  • Yoon, Kyungho;Lee, Youngyu;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.411-437
    • /
    • 2012
  • In this paper, we propose a continuum mechanics based 3-D beam finite element with cross-sectional discretization allowing for warping displacements. The beam element is directly derived from the assemblage of 3-D solid elements, and this approach results in inherently advanced modeling capabilities of the beam element. In the beam formulation, warping is fully coupled with bending, shearing, and stretching. Consequently, the proposed beam elements can consider free and constrained warping conditions, eccentricities, curved geometries, varying sections, as well as arbitrary cross-sections (including thin/thick-walled, open/closed, and single/multi-cell cross-sections). We then study the modeling and predictive capabilities of the beam elements in twisting beam problems according to geometries, boundary conditions, and cross-sectional meshes. The results are compared with reference solutions obtained by analytical methods and solid and shell finite element models. Excellent modeling capabilities and solution accuracy of the proposed beam element are observed.

Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses (전자기 로렌츠력을 이용한 다중안정성 마이크로 액추에이터의 비선형 구조 및 전기-열 해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1119-1127
    • /
    • 2010
  • In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator.