• Title/Summary/Keyword: coupled core

Search Result 282, Processing Time 0.025 seconds

A New Coil Set with Core for Magnetic Resonant Systems (코어를 사용한 새로운 자기공진형 코일구조)

  • Huh, Jin;Rim, Chun-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.625-626
    • /
    • 2012
  • A coupled magnetic resonance system (CMRS) using compact coil sets with core driven by a class-E inverter was proposed. The source and load coils of conventional CMRS were replaced with two coils containing core so that the system can be quite compact in size and easy to design due to a resonance frequency for all resonant tanks regardless of coupling factor. Experiments for 500 kHz switching frequency show 40% system efficiency.

  • PDF

Analysis and Design of Coupled Inductors for Two-Phase Interleaved DC-DC Converters

  • Lee, Jong-Pil;Cha, Honnyong;Shin, Dongsul;Lee, Kyoung-Jun;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.339-348
    • /
    • 2013
  • Multiphase dc-dc converters are widely used in modern power electronics applications due to their advantages over single-phase converters. Such advantages include reduced current stress in both the switching devices and passive elements, reduced output current ripple, and so on. Although the output current ripple of a converter can be significantly reduced by virtue of the interleaving effect, the inductor current ripple cannot be reduced even with the interleaving PWM method. One way to solve this problem is to use a coupled inductor. However, care must be taken in designing the coupled inductor to maximize its performances. In this paper, a detailed analysis of a coupled inductor is conducted and the effect of a coupled inductor on current ripple reduction is investigated extensively. From this analysis, a UU core based coupled inductor structure is proposed to maximize the performance of the coupled inductor.

Add/drop Filter for CWDM Systems Using Side-coupled Long-period Fiber Gratings

  • Chan Florence Y. M.;Kim Myoung Jin;Lee Byeong Ha
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.135-139
    • /
    • 2005
  • We demonstrate a simple and effective wavelength-tunable add/drop filter suitable for coarse wavelength division multiplexing (CWDM) systems. The filter consists of two fibers in contact side by side, with identical long-period fiber gratings (LPG) in each fiber. The LPG couples the power in the fundamental core mode to one of the cladding modes, which is then coupled to the same order cladding mode in the other fiber through evanescent-field coupling between two fibers. Finally, the cladding mode in the second fiber is coupled to its core mode with the help of the other LPG. With an optimal longitudinal offset distance of 10 em, coupling efficiency as high as -1.68 dB and side lobes smaller than -24 dB were experimentally obtained. The experimental results agreed well with the theoretical ones. The operating wavelength of the proposed add/drop filter was tunable by varying the temperature. The temperature sensitivity was measured to be -0.43 nm/$^{\circ}C$.

Coupled neutronics/thermal-hydraulic analysis of ANTS-100e using MCS/RAST-F two-step code system

  • Tung Dong Cao Nguyen;Tuan Quoc Tran;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4048-4056
    • /
    • 2023
  • The feasibility of using the Monte Carlo code MCS to generate multigroup cross sections for nodal diffusion simulations RAST-F of liquid metal fast reactors is investigated in this paper. The performance of the MCS/RAST-F code system is assessed using steady-state simulations of the ANTS-100e core. The results show good agreement between MCS/RAST-F and MCS reference solutions, with a keff difference of less than 77 pcm and root-mean-square differences in radial and axial power of less than 0.5% and 0.25%, respectively. Furthermore, the MCS/RAST-F reactivity feedback coefficients are within three standard deviations of the MCS coefficients. To validate the internal thermal-hydraulic (TH) feedback capability in RAST-F code, the coupled neutronic/TH1D simulation of ANTS-100e is performed using the case matrix obtained from MCS branch calculations. The results are compared to those obtained using the MARS-LBE system code and show good agreement with relative temperature differences in fuel and coolant of less than 0.8%. This study demonstrates that the MCS/RAST-F code system can produce accurate results for core steady-state neutronic calculations and for coupled neutronic/TH simulations.

Transient Fault Current Limiting Characteristics of a Transformer Type SFCL Using an Additional Magnetically Coupled Circuit

  • Lim, Seung-Taek;Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.42-45
    • /
    • 2017
  • In this paper, a transformer type SFCL (superconducting fault current limiter) using an additional magnetically coupled circuit was suggested. Its transient fault current limiting characteristics, due to the winding direction of additional coupled circuit, were analyzed through fault current limiting tests. The suggested transformer type SFCL was composed of the primary winding, and one secondary winding wound on the same iron core together with an additional magnetically coupled circuit. That circuit consists of the other secondary winding together with the other SC (superconducting) element connected in parallel with its other secondary winding. As one of the effective design parameters to affect the transient fault current of the SFCL, the fault current limiting tests of the suggested SFCL were carried out considering the winding direction of its additional coupled circuit. It was confirmed that, through the analysis on the fault current tests of the SFCL, the quench sequence of two SC elements comprising the suggested SFCL could be adjusted by the winding direction of the additional coupled circuit.

Optimal Design of High Frequency Transformer for 150W Class Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.288-294
    • /
    • 2015
  • Recently, the module-integrated converter has shown an interest in the photovoltaic generation system. In this system, the high frequency transformer should be compact and efficient. The proposed method is based on the correlation characteristic between the copper and core loss to minimize the loss of transformer. By sizing an effective cross-sectional area and window area of core, the amount of loss is minimized. This paper presents the design and analysis of high frequency transformer by using the 3D finite element model coupled with DC-DC converter circuit for more accurate analysis by considering the nonlinear voltage and current waveforms in converter circuit. The current waveform in each winding is realized by using the ideal DC voltage source and switching component. And, the thermal analysis is performed to satisfy the electrical and thermal design criteria.

Coreless Hall Current Sensor for Automotive Inverters Decoupling Cross-coupled Field

  • Kim, Ho-Gi;Kang, Gu-Bae;Nam, Dong-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2009
  • Automotive inverters may require current sensors for motor torque control, especially, in applications of hybrid electric vehicles or fuel cell vehicles. In this paper, to achieve a compact, integrated and low cost current sensor, a hall current sensor without magnetic core is introduced for integrating an automotive inverter. The compactness of the current sensor is possible by using integrated magnetic concentrators based on the Hall effect. Magnetic fields caused by three-phase currents are analyzed and a magnetic shield design is proposed for decoupling the cross-coupled field. It offers galvanic isolation, wide bandwidth (>100kHz), and accuracy(< 1%). Using 2D FEM analysis, its performance is demonstrated with design parameters at a U-shaped magnetic shield. The proposed coreless current sensor is tested with rated current to validate the linearity and accuracy.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

The Effect of Ferrite Cores on the Inductively Coupled Plasma Driven at 13.56 MHz (13.56 MHz 유도 결합 플라즈마에서의 강자성체 페라이트 코어의 효과)

  • Lee, Won-Ki;Lee, Kyeong-Hyo;Chung, Chin-Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.35-38
    • /
    • 2005
  • Due to high permeability of the ferrite cores, the characteristics of the inductively coupled plasma(ICP) are expected to be greatly improved. We investigated the effect of the ferrite cores on conventional inductively coupled plasma. It was observed that the current and voltage in the ICP antenna are slightly decreased and the power transfer efficiency is increased. However, due to eddy current and hysteresis loss, plasma density in the ICP with the ferrite cores is not increased. It seems that the ICP with the ferrite cores at low frequency ($\∼$100 kHz) will be greatly improved since the losses at the low frequency can be negligible.

  • PDF