• 제목/요약/키워드: coupled buildings

검색결과 148건 처리시간 0.02초

비정형 초고층 건물의 바람에 의한 편심응답 특성 (Characteristics of wind-Induced Coupled Motion of Tapered and Setback Tall Buildings)

  • 김용철;칸다 준;타무라 유키오
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.79-86
    • /
    • 2013
  • For most of recent tall buildings, one characteristic is that their building shapes vary with height such as taper and setback, and this implies that the distribution of their structural components may also vary with height. Because of these structural variations, although the sectional shapes of these buildings are symmetric, it is difficult to say whether or not they are structurally symmetric. The acceleration responses of structurally asymmetric tall buildings are larger than those of non-eccentric buildings, thus raising the possibility of problems during strong winds and typhoons. This paper describes wind tunnel tests carried out using building models with height variations and acceleration response analyses, and discusses the resulting response characteristics. For tapered and setback buildings, although the across-wind accelerations are larger than those of a square building, the total root-mean-square accelerations remain small because of smaller along-wind and torsional rms accelerations. And it was found that the effects of statistical couplings between along-wind force and other two forces are negligible.

Seismic response control of a building complex utilizing passive friction damper: Analytical study

  • Ng, C.L.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제22권1호
    • /
    • pp.85-105
    • /
    • 2006
  • Control of structural response due to seismic excitation in a manner of coupling adjacent buildings has been actively developed, and most attention focused on those buildings of similar height. However, with the rapid development of some modern cities, multi-story buildings constructed with an auxiliary low-rise podium structure to provide extra functions to the complex become a growing construction scheme. Being inspired by the positively examined coupling control approach for buildings with similar height, this paper aims to provide a comprehensive analytical study on control effectiveness of using friction dampers to link the two buildings with significant height difference to supplement the recent experimental investigation carried out by the writers. The analytical model of a coupled building system is first developed with passive friction dampers being modeled as Coulomb friction. To highlight potential advantage of coupling the main building and podium structure with control devices that provide a lower degree of coupling, the inherent demerit of rigid-coupled configuration is then evaluated. Extensive parametric studies are finally performed. The concerned parameters influencing the design of optimal friction force and control efficiency include variety of earthquake excitation and differences in floor mass, story number as well as number of dampers installed between the two buildings. In general, the feasibility of interaction control approach applied to the complex structure for vibration reduction due to seismic excitation is supported by positive results.

Damage detection of mono-coupled multistory buildings: Numerical and experimental investigations

  • Xu, Y.L.;Zhu, Hongping;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • 제18권6호
    • /
    • pp.709-729
    • /
    • 2004
  • This paper presents numerical and experimental investigations on damage detection of mono-coupled multistory buildings using natural frequency as only diagnostic parameter. Frequency equation of a mono-coupled multistory building is first derived using the transfer matrix method. Closed-form sensitivity equation is established to relate the relative change in the stiffness of each story to the relative changes in the natural frequencies of the building. Damage detection is then performed using the sensitivity equation with its special features and minimizing the norm of an objective function with an inequality constraint. Numerical and experimental investigations are finally conducted on a mono-coupled 3-story building model as an application of the proposed algorithm, in which the influence of modeling error on the degree of accuracy of damage detection is discussed. A mono-coupled 10-story building is further used to examine the capability of the proposed algorithm against measurement noise and incomplete measured natural frequencies. The results obtained demonstrate that changes in story stiffness can be satisfactorily detected, located, and quantified if all sensitive natural frequencies to damaged stories are available. The proposed damage detection algorithm is not sensitive to measurement noise and modeling error.

Effects of coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness on wind-excited tall buildings

  • Thepmongkorn, S.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.61-80
    • /
    • 2002
  • Wind tunnel aeroelastic model tests of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building were conducted using a three-degree-of-freedom base hinged aeroelastic(BHA) model. Experimental investigation into the effects of coupled translational-torsional motion, cross-wind/torsional frequency ratio and eccentricity between centre of mass and centre of stiffness on the wind-induced response characteristics and wind excitation mechanisms was carried out. The wind tunnel test results highlight the significant effects of coupled translational-torsional motion, and eccentricity between centre of mass and centre of stiffness, on both the normalised along-wind and cross-wind acceleration responses for reduced wind velocities ranging from 4 to 20. Coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness also have significant impacts on the amplitude-dependent effect caused by the vortex resonant process, and the transfer of vibrational energy between the along-wind and cross-wind directions. These resulted in either an increase or decrease of each response component, in particular at reduced wind velocities close to a critical value of 10. In addition, the contribution of vibrational energy from the torsional motion to the cross-wind response of the building model can be greatly amplified by the effect of resonance between the vortex shedding frequency and the torsional natural frequency of the building model.

Seismic performance evaluation of coupled core walls with concrete and steel coupling beams

  • Fortney, Patrick J.;Shahrooz, Bahram M.;Rassati, Gian A.
    • Steel and Composite Structures
    • /
    • 제7권4호
    • /
    • pp.279-301
    • /
    • 2007
  • When coupling beams are proportioned appropriately in coupled core wall (CCW) systems, the input energy from ground motions is dissipated primarily through inelastic deformations in plastic hinge regions at the ends of the coupling beams. It is desirable that the plastic hinges form at the beam ends while the base wall piers remain elastic. The strength and stiffness of the coupling beams are, therefore, crucial if the desired global behavior of the CCW system is to be achieved. This paper presents the results of nonlinear response history analysis of two 20-story CCW buildings. Both buildings have the same geometric dimensions, and the components of the buildings are designed based on the equivalent lateral force procedure. However, one building is fitted with steel coupling beams while the other is fitted with diagonally reinforced concrete coupling beams. The force-deflection relationships of both beams are based on experimental data, while the moment-curvature and axial load-moment relationships of the wall piers are analytically generated from cross-sectional fiber analyses. Using the aforementioned beam and wall properties, nonlinear response history analyses are performed. Superiority of the steel coupling beams is demonstrated through detailed evaluations of local and global responses computed for a number of recorded and artificially generated ground motions.

인접건물의 준능동 퍼지제어를 위한 유전자알고리즘 기반 다목적 최적설계 (Multi-objective Optimal Design using Genetic Algorithm for Semi-active Fuzzy Control of Adjacent Buildings)

  • 김현수
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.219-224
    • /
    • 2016
  • 본 연구에서는 지진하중을 받는 인접한 건물의 진동제어를 위한 준능동 제어장치의 제어성능을 검토하였다. 준능동 제어장치로는 MR 감쇠기를 사용하였다. MR 감쇠기로 연결된 인접한 건물을 효과적으로 제어하기 위하여 퍼지제어알고리즘을 사용하였다. MR 감쇠기로 연결된 인접한 건물의 제어시 한쪽 건물의 응답을 저감시키는 것은 다른 한 쪽 건물의 응답을 증가시키는 효과를 가져온다. 따라서 연결된 건물의 제어는 서로 상충되는 특성이 있기 때문에 다목적 최적화문제로 귀결된다. 따라서 본 연구에서는 다목적 유전자알고리즘을 사용하여 MR 감쇠기를 제어하는 퍼지제어알고리즘을 최적화하였다. 수치해석을 통하여 준능동 MR 감쇠기를 이용한 인접건물의 연결제어효과를 검토하였고 매우 우수한 성능을 나타내는 것을 확인하였다.

Structural Shear Wall Systems with Metal Energy Dissipation Mechanism

  • Li, Guoqiang;Sun, Feifei;Pang, Mengde;Liu, Wenyang;Wang, Haijiang
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.195-203
    • /
    • 2016
  • Shear wall structures have been widely used in high-rise buildings during the past decades, mainly due to their good overall performance, large lateral stiffness, and high load-carrying capacity. However, traditional reinforced concrete wall structures are prone to brittle failure under seismic actions. In order to improve the seismic behavior of traditional shear walls, this paper presents three different metal energy-dissipation shear wall systems, including coupled shear wall with energy-dissipating steel link beams, frame with buckling-restrained steel plate shear wall structure, and coupled shear wall with buckling-restrained steel plate shear wall. Constructional details, experimental studies, and calculation analyses are also introduced in this paper.

Distribution of Optimum Yield-Strength and Plastic Strain Energy Prediction of Hysteretic Dampers in Coupled Shear Wall Buildings

  • Bagheri, Bahador;Oh, Sang-Hoon;Shin, Seung-Hoon
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1107-1124
    • /
    • 2018
  • The structural behavior of reinforced concrete coupled shear wall structures is greatly influenced by the behavior of their coupling beams. This paper presents a process of the seismic analysis of reinforced concrete coupled shear wall-frame system linked by hysteretic dampers at each floor. The hysteretic dampers are located at the middle portion of the linked beams which most of the inelastic damage would be concentrated. This study concerned particularly with wall-frame structures that do not twist. The proposed method, which is based on the energy equilibrium method, offers an important design method by the result of increasing energy dissipation capacity and reducing damage to the wall's base. The optimum distribution of yield shear force coefficients is to evenly distribute the damage at dampers over the structural height based on the cumulative plastic deformation ratio of the dissipation device. Nonlinear dynamic analysis indicates that, with a proper set of damping parameters, the wall's dynamic responses can be well controlled. Finally, based on the total plastic strain energy and its trend through the height of the buildings, a prediction equation is suggested.

Experimental studies on seismic behavior of steel coupling beams

  • Park, Wan-Shin;Yun, Hyun-Do;Chung, Jae-Yong;Kim, Yong-Chul
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.695-712
    • /
    • 2005
  • Hybrid coupled shear walls in tall buildings are known as efficient structural systems to provide lateral resistance to wind and seismic loads. Multiple hybrid coupled shear walls throughout a tall building should be joined to provide additional coupling action to resist overturning moments caused by the lateral loading. This can be done using a coupling beam which connects two shear walls. In this study, experimental studies on the hybrid coupled shear wall were carried out. The main test variables were the ratios of coupling beam strength to connection strength. Finally, this paper provides background for rational design guidelines that include a design model to behave efficiently hybrid coupled shear walls.

Seismic performance of moment resisting steel frames retrofitted with coupled steel plate shear walls with different link beams

  • Amir Masoumi Verki;Adolfo Preciado;Pegah Amiri Motlagh
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.591-609
    • /
    • 2023
  • In some buildings, the lateral structural response of steel framed buildings depends on the shear walls and it is very important to study the behavior of these elements under near-field seismic loads. The link beam in the opening of the shear wall between two wall plates is investigated numerically in terms of behavior and effects on frames. Based on the length of the beam and its bending and shear behavior, three types of models are constructed and analyzed, and the behavior of the frames is also compared. The results show that by reducing the length of the link beam, the base shear forces reduce about 20%. The changes in the length of the link beam have different effects on the degree of coupling. Increasing the length of the link beam increases the base shear about 15%. Also, it has both, a positive and a negative effect on the degree of coupling. The increasing strength of the coupling steel shear wall is linearly related to the yield stress of the beam materials, length, and flexural stiffness of the beam. The use of a shorter link beam will increase the additional strength and consequently improving the behavior of the coupling steel shear wall by reducing the stresses in this element. The link beam with large moment of inertia will also increase about 25% the additional strength and as a result the coefficient of behavior of the shear wall.