• 제목/요약/키워드: coupled analysis

검색결과 4,219건 처리시간 0.03초

유한요소해석을 이용한 배열구조의 평면형 비대칭 결합선로 설계 (Design of Asymmetric Parallel Coupled-line Array using Finite Element Analysis)

  • 윤재호;박준석;김형석
    • 한국전자파학회논문지
    • /
    • 제13권6호
    • /
    • pp.521-527
    • /
    • 2002
  • 본 논문에서는 배열구조의 비대칭 결합선로를 유한요소해석을 이용해서 설계하는 방법을 제시하였다. 비대칭 결합선로가 배열되어 있는 구조를 설계하기 위해 결합선로에서 나타나는 커패시턴스의 분포를 통해 설계에 필요한 몇 가지 설계법칙을 정의하였다. 제시한 배열구조의 비대칭 결합선로의 설계방법을 검증하기 위해 이동 통신 수동소자로 비대칭 결합선로의 배열구조로 되어 있는 comb-Line 대역통과여파기를 직접 설계, 측정하여 설계방법의 타당성을 확인하였다.

박용엔진 축계 비틀림/종 연성진동 해석을 위한 크랭크 축 강성행렬 구축 (Crankshaft Stiffness Matrix Construction for the Vibration Analysis Coupled with Torsional and Axial Directions of a Marine Engine Shaft System)

  • 김원진;전민규;정동관
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.55-61
    • /
    • 1999
  • The torsional and axial vibrations of shaft system have been calculated independently because of both the limitation of computing time and the complexity of crankshaft model. In actual system, however, the torsional and axial vibrations are coupled. Therefore, in recent, many works in the coupled vibration analysis have been done to find out the more exact dynamic behavior of shaft system. The crankshaft model is very important in the vibration analysis of shaft system because most of excitation forces act on the crankshaft. It is, however, difficult to establish an exact model of crankshaft since its shape is very complex. In this work, an efficient method is proposed to construct the stiffness matrix of crankshaft using a finite element model of half crankthrow. The proposed and existing methods are compared by applying to both a simple thick beam with circular cross section and an actual crankshaft.

  • PDF

유체로 연성된 두 환형평판의 진동해석 (Vibration Analysis of Two Annular Plates Coupled with a Fluid)

  • 정경훈;김종인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.906-910
    • /
    • 2004
  • An analytical method for the free vibration of two annular plates coupled with water was developed by the Rayleigh-Ritz method. The two plates with unequal thickness are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the annular plates Is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

  • PDF

Energetics of In-plane Motions in Coupled Plate Structures

  • Park, Young-Ho;Park, Chang Hyun
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.428-435
    • /
    • 2020
  • Energy flow analysis (EFA) has been used to predict the frequency-averaged vibrational responses of built-up structures at high frequencies. In this study, the frequency-averaged exact energetics of the in-plane motions of the plate were derived for the first time by solving coupled partial differential equations. To verify the EFA for the in-plane waves of the plate, numerical analyses were performed on various coupled plate structures. The prediction results of the EFA for coupled plate structures were shown to be accurate approximations of the frequency-averaged exact energetics, which were obtained from classical displacement solutions. The accuracy of the results predicted via the EFA increased with an increase in the modal density, regardless of various structural parameters. Therefore, EFA is an effective technique for predicting the frequency-averaged vibrational responses of built-up structures in the high frequency range.

억지말뚝-사면의 상호작용을 고려한 사면안전율 분석 (Stability Analysis of Pile/Slope Systems Considering Pile-slope Interaction)

  • 김병철;유광호;정상섬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.513-520
    • /
    • 2003
  • A numerical comparison or predictions by limit equilibrium analysis and 3n analysis is presented for slope/pile system. Special attention is given to the coupled analysis based on the explicit-finite-difference code, FLAC. To this end, an internal routine (FISH) was developed to calculate a factor of safety for a pile-reinforced slope according to shear strength reduction technique. The case of coupled analyses was performed for stabilizing piles in slope in which the pile response and slope stability are considered simultaneously and subsequently the factors of safety are compared to uncoupled analysis (limit equilibrium analysis) solution for a homogeneous slope. Based on a limited parametric study, it is shown that in the free-head condition the factor of safety in slope is more conservative for a coupled analysis than for an uncoupled analysis and a definitely larger value represents when piles are installed in the middle of the slopes and are restrained in the pile head.

  • PDF

전자계-기계계 결합해석에 의한 건식변압기의 단락강도 예측 (Short Circuit Electromagnetic Force Prediction by Coupled Electromagnetic-Mechanical Field Analysis of Dry-Type Transformer)

  • 안현모;한성진
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.301-308
    • /
    • 2011
  • This paper deals with the coupled electromagnetic-mechanical field analysis for short-circuit electromagnetic force of the dry-type transformer. The short-circuit currents are calculated using external circuit in accordance with short-circuit test equipment. According to short-circuit current, the generated magnetic leakage flux density in dry-type transformer model is calculated by finite element method. The radially-directed electromagnetic forces in windings are calculated using electromagnetic field analysis and then axially-directed electromagnetic forces in windings are calculated using electromagnetic-mechanical field analysis. The calculated axially-directed electromagnetic forces in high voltage winding are compared to those of measured ones and showed good agreement with experimental results.

Zero-Voltage-Switching Boost Converter Using a Coupled Inductor

  • Do, Hyun-Lark
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.16-20
    • /
    • 2011
  • This paper presents a zero-voltage-switching (ZVS) boost converter using a coupled inductor. It utilizes an additional winding to the boost inductor and an auxiliary diode. The ZVS characteristic of the proposed converter reduces the switching losses of the active power switches and raises the power conversion efficiency. The principle of operation and a system analysis are presented. The theoretical analysis and performance of the proposed converter were verified with a 100W experimental prototype operating at a 107 kHz switching frequency.

Differential quadrature method for free vibration analysis of coupled shear walls

  • Bozdogan, K.B.
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.67-81
    • /
    • 2012
  • Differential Quadrature Method (DQM) is a powerful method which can be used to solve numerical problems in the analysis of structural and dynamical systems. In this study the governing equation which represents the free vibration of coupled shear walls is solved using the DQM method. A one-dimensional model has been used in this study. At the end of study various examples are presented to verify the accuracy of the method.

Analytical model for the composite effect of coupled beams with discrete shear connectors

  • Zheng, Tianxin;Lu, Yong;Usmani, Asif
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.369-389
    • /
    • 2014
  • Two-layer coupled or composite beams with discrete shear connectors of finite dimensions are commonly encountered in pre-fabricated construction. This paper presents the development of simplified closed-form solutions for such type of coupled beams for practical applications. A new coupled beam element is proposed to represent the unconnected segments in the beam. General solutions are then developed by an inductive method based on the results from the finite element analysis. A modification is subsequently considered to account for the effect of local deformations. For typical cases where the local deformation is primarily concerned about its distribution over the depth of the coupled beam, empirical modification factors are developed based on parametric calculations using finite element models. The developed analytical method for the coupled beams in question is simple, sufficiently accurate, and suitable for quick calculation in engineering practice.