• Title/Summary/Keyword: counterflow flame

Search Result 163, Processing Time 0.024 seconds

Numerical Study on Non-premixed Methane Flames in Twin-jet Counterflow (Twin-jet 대향류에서 메탄 비예혼합화염에 대한 수치적 연구)

  • Chun, K.W.;Kim, J.H.;Chung, C.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.49-56
    • /
    • 2004
  • A two-dimensional twin-jet counterflow system has been designed, in which two streams from two double-slit nozzles form a counterflow. This flow system enables one to systematically investigate various effects on non-premixed flames, including the non-premixed flame interaction, the edge flame behavior and the effect of curvature. Non-premixed flame interaction in the twin-jet counterflow system has been investigated numerically for methane fuel diluted with nitrogen. Three types of non-premixed flame(conventional counterflow flame, crossed twin-jet flame and petal shaped flame) were simulated depending on the combination of fuel/oxidizer supply to each nozzle. The extinction characteristics of non premixed methane flame in the twin-jet counterflow have been investigated numerically. The boundary of the existence of petal-shaped flames was identified for the twin-jet counterflow flames. Due to the existence of the unique petal-shaped flames, the extinction boundary for the twin-jet counterflow can be extended significantly compared to that for the conventional counterflow non-premixed flames, through the interaction of two flames. Through the comparison of the crossed twin-jet flame and the conventional counterflow flame, structure of the crossed twin-jet counterflow flame is analysed. Through the comparison of the petal shaped flame and the conventional counterflow flame, the extension of the extinction boundary for the twin-jet counterflow is investigated.

  • PDF

On the Characteristics of Extinction and Re-ignition in a Crossed Twin Jet Counterflow (Crossed Twin Jet Counterflow에서의 소염과 재점화 특성)

  • Lee, B.K.;Yang, S.Y.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.25-31
    • /
    • 2002
  • For the better understanding of the stability of turbulent combustion, more researches on extinction and re-ignition are needed. Flame interactions in non-premixed flame have also not been greatly researched. We made a hybrid twin jet flame, the combinations of diffusion flame and partially-premixed diffusion flame, in a twin jet counterflow configuration. The extinction limits of a crossed twin jet counterflow have been extended in comparison with those of a one-dimensional counterflow because of flame interactions through heat transfer and joint ownership of various radicals. Besides, we have obtain ignition $Damk\"{o}hler$ number by experimental method without external ignition source using the extinction characteristic in a crossed twin jet counterflow flame. From results, we can identify the hysteresis between extinction and ignition $Damk\"{o}hler$ number in S-curve.

  • PDF

Unsteady behavior of counterflow flame (대향류 화염의 비정상 거동에 대한 연구)

  • Lee, Ki-Ho;Lee, Uen-Do;Oh, Kwang Chul;Lee, Chun-Bum;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.33-39
    • /
    • 2002
  • Unsteady behaviors of counterflow flame were studied experimentally in opposing jet counterflow burner using diluted methane. To generate the unsteadiness on the flame, the counterflow diffusion flame was perturbed by velocity changes made by the pistons installed on both sides of the air and fuel stream. The velocity changes were measured by Hot wire and Laser Doppler Velocimetry, and the flame behaviors were observed by High speed ICCD and ICCD. In this investigation, the spatial irregularity of the strain rate caused the flame to extinguish from the outside to the axis during the extinction, and we found the following unsteady phenomena. First, the extinction strain rates of unsteady cases are much larger than those of the steady ones. Second, the extinction strain rates become larger as the slope of the change of the strain rate increases. Third, the unsteady extinction strain rates become smaller with the increase of the initial strain rate.

  • PDF

Reactants Transport Mechanism in Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 반응물 전달기구)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1690-1696
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry are adopted in this calculation. The results show that an initially flat stagnation plane, where an axial velocity is zero, is deformed into a complex-shaped plane, and an initial stagnation point is moved far away from vortex head when the counterflow field is perturbed by the vortex. It is noted that the movement of stagnation point can alter the mechanism of reactants (fuel and oxidizer) fluxes into the flame surface, and then can alter the flame structure.

  • PDF

Extinction of Non-premixed methane Flame in Twin-Jet Counterflow (Twin-Jet 대향류에서 메탄 비예혼합화염의 소염 특성)

  • Noh, T.G.;Yang, S.Y.;Ryu, S.K.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.195-200
    • /
    • 2003
  • A two-dimensional "twin-jet counterflow" burner has been designed for the better understanding of the stability of turbulent flames. This flow system enables one to systematically investigate various effects on non-premixed flames, including the effects of curvature, negative strain, and non-premixed flame interactions. The objective of this study is comparing characteristics of extinction of non-premixed methane flames with that of non-premixed propane flames investigated previously. The extinction limit of non-premixed methane and propane flames can be extended compare to that for the conventional counterflow non-premixed flame because of the existence of petal shaped flame and have same structure. The hysteresis in transition between the petal shaped flame and the curved two-wing flames could be observed. We could find differences between non-premixed methane flame and non-premixe propane flame such as the position of one wing extinction and the regime of one wing extinction.

  • PDF

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 1. Concentration of Fuel

  • Park, Woe-Chul
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • Structure of the counterflow nonpremixed flames were investigated by using Fire Dynamics Simulator(FDS) and OPPDIF to evaluate FDS for simulations of the diffusion flame. FDS, employed a mixture fraction formulation, were applied to the diluted axisymmetric methane-air nonpremixed counterflow flames. Fuel concentration in the mixture of methane and nitrogen was considered as a numerical parameter in the range from 20% to 100% increasing by 10% by volume at the global strain rates of $a_g = 20S^{-l} and 80S^{-1}$ respectively. In all the computations, the gravity was set to zero since OPPDIF is not able to compute the buoyancy effects. It was shown by the axisymmetric simulation of the flames with FDS that increasing fuel concentration increases the flame thickness and decreases the flame radius. The centerline temperature and axial velocity, and the peek flame temperature showed good agreement between the both methods.

Flame Behaviors of Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 화염거동)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.57-63
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the flame behaviors of $CH_4/N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed reaction mechanism are adopted in this calculation. The results showed that an initially flat stagnation plane, on which an axial velocity was zero, was deformed into a complex-shaped plane, and an initial stagnation point was moved far away from a vortex head when the counterflow field was perturbed by the vortex. It was noted that the movement of stagnation point could alter the species transport mechanism to the flame surface. It was also identified that the altered species transport mechanism affected the distributions of the mixture fraction and the scalar dissipation rate.

  • PDF

Numerical Study of Interaction between Hydrogen and Hydrocarbon Flames (수소화염과 탄화수소화염의 상호작용에 관한 수치계산 연구)

  • Oh, Chang-Bo;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.12-17
    • /
    • 2010
  • Numerical simulations were performed for the prediction of the flame structure during the interaction between hydrogen and hydrocarbon flames. A counterflow flow geometry was introduced to establish the interacting two flames. Methane was used as a representative hydrocarbon fuel in this study. A well-known numerical code for the counterflow flame, OPPDIF, was used for the simulations. The detailed chemistry was adopted to predict the flame structure reasonably. The interaction of two one-dimensional premixed flames established in counterflow burner was investigated with the global strain rate and velocity ratio. It was found that the maximum temperature located near the methane flame surface while the heat release rate of methane was lower than hydrogen flame. The flame thickness become narrow with increasing the velocity ratio while the global strain rate was fixed. The local strain rate and heat release rate at the methane flame surface were correlated with the global strain rate, while those at the hydrogen flame were not correlated with the global strain rate. However, the maximum temperature of the interacting flames was correlated with the global strain rate.

An Investigation on the Formation Characteristics of a Single Vortex Interacting with Counterflow Nonpremixed Flame (대향류 비예혼합화염과 상호작용하는 단일 와동의 생성특성에 관한 연구)

  • Yoo, Byung-Hun;Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.49-56
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the formation characteristics of a single vortex interacting with $CH_4/N_2$-Air counterflow nonpremixed flame. The numerical method was based on a predictor-corrector scheme for a low Mach number flow. The detailed transport properties and a 16-step augmented reduced mechanism are adopted in this calculation. The budgets of the vorticity transport equation arc examined to reveal the mechanisms leading to the formation, evolution and dissipation of a single vortex interacting with counterflow nonpremixed flame. It is found that the stretching term, which depends on the azimuthal component of vorticity, and radial velocity, mainly generates vortieitv in non-reacting and reacting flows. The viscous and baroclinic torque term destroy the vorticity in non-reacting flow. In addition, the baroclinic torque term due to density and pressure gradient generates vorticity, while viscous and the volumetric expansion terms due to density gradient destroy vorticity in reacting flow.

  • PDF

Numerical Analysis for the Detailed Structure and the Soot Formation Mechanism in Counterflow Ethylene-Air Nonpremixed Flame (대향류 에틸렌/공기 비예혼합 화염의 구조 및 Soot 생성 메커니즘 해석)

  • 임효준;김후중;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.40-54
    • /
    • 1999
  • The flame structure and soot formation in the counterflow Ethylene-Air nonpremixed flame are numerically analyzed. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of benzene and acetylene. In terms of the centerline velocity and the soot volume fraction, the predicted results are compared with the experimental data. The detailed discussion has been made for the sensitivity of model constants and the deficiencies of the present model. Numerical results indicated that the acetylene addition to the soot surface plays the dominant role in the soot mass growth for the counterflow nonpremixed flame.

  • PDF