• Title/Summary/Keyword: counterclockwise

Search Result 170, Processing Time 0.025 seconds

A LONGITUDINAL STUDY ON THREE FACIAL GROWTH PATTERNS IN KOREANS WITH NORMAL OCCLUSION (정상교합자의 3가지 안면골 성장양상에 관한 누년적 연구)

  • Park, Krung-Duk;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.25 no.3 s.50
    • /
    • pp.273-286
    • /
    • 1995
  • The purpose of this study was to compare the difference of the growth aspects in three facial growth patterns. The biennial serial cephalometric radiographs of 33 samples(19males, 14females) with normal occlusion from 8.5 years to 18.5 yews of age were used in this study. The facial growth patterrn was categorized in 3 types(Drop type, Neutral type, Forward type) by the total amounts of the Y-axis which changed from 8.5 years to 18.5 years of age. The growth change of the craniofacial area during 10 years in each growth type was analyzed and was compared among the 3 growth types. The results of this study might be summarized as follows. 1. The samples that were classified by total change of the Y-axis during this study period were distributed to 52% of the neutral type, 27% of the forward type, 21% of the drop type. 2. The anterior growth of the maxilla to the cranial base(N per A) showed larger in the forward type than in other 2 types(p<0.05). 3. The palatal plane to the FH plane showed more anterior-superior inclination in the forward type with age during this study period. 4. The anterior growth of the mandible to the cranial base(N per Pog) appeared large in rank order, of largest the forward type, second the neutral type, and third the drop type(p<0.05). 5. During this study period the mandibular plane(SN/MN,FMA) showed more counterclockwise rotation in the forward type than in the drop type(p<0.05), and this tendency was stronger in males than in females(p<0.05). 6. The growth of the mandibular corpus length(Go-Me) showed smaller in the drop type than in the other 2 types(p<0.05). 7. In the forward type and the neutral type, the anterior growth of the mandible was larger than that of the maxilla(p<0.05). 8. In the craniofacial growth distances and angulations turned out to be somewhat variable, but the vertical proportion had a strong tendency whose original relation was maintained consistently during this study period. 9. Through these analyzed data, the profilograms on each growth type were constructed to evaluate individual growth pattern in the orthodontic diagnosis.

  • PDF

Comparison of longitudinal treatment effects with facemask and chincup therapy followed by fixed orthodontic treatment on Class III malocclusion (상악전방견인장치와 이모장치 및 고정식 교정장치 치료를 받은 III급 부정교합 환자의 치료효과에 대한 종단적 비교)

  • Lee, Nam-Ki;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.39 no.6
    • /
    • pp.362-371
    • /
    • 2009
  • Objective: The purpose of this study was to compare the longitudinal treatment effects of facemask with rapid maxillary expansion (FM/RME) and chincup (CC) therapy followed by fixed orthodontic treatment (FOT) in Class III malocclusion (CIII) patients. Methods: The samples consisted of twenty-one CIII patients who had similar skeletal and dental characteristics before FM/RME or CC therapy and good retention results (Class I molar/canine relationship and positive overbite/overjet) after FOT (Group 1, FM/RME, n = 11; Group 2, CC, n = 10). Lateral cephalograms were taken before (T0) and after FM/RME or CC therapy (T1), and after FOT and retention (T2). Skeletal and dental variables were measured. Mann-Whitney U-test and Wilcoxon signed-rank test were used for statistical analysis. Results: During T0-T1, FM/RME therapy induced forward movement of point A, and labioversion of the upper incisors. Both groups showed posterior repositioning of the mandible. FM/RME resulted in increase of the vertical dimension; however, CC caused an increase in articular angle and decrease in gonial angle. During T1-T2, both groups exhibited forward growth of point A. Group 1 showed forward growth and counterclockwise rotation of the mandible and increase of IMPA; however, Group 2, showed increase of ANS-Me/N-Me and decrease of overbite. Conclusions: The key factor for successful FM/RME and CC therapy and good retention results might be a harmonized forward growth of the maxilla that could keep pace with the growth and rotation of the mandible.

TENSILE STRENGTHS OF PRE-LIGATURED BUTTON WITH SEVERAL TYPES OF CONTAMINATION IN DIRECT BONDING PROCEDURE WHICH CAN HAPPEN DURING THE SURGICAL EXPOSURE OF UNERUPTED TEETH (치아의 견인을 위한 버튼 접착시 오염이 인장강동에 미치는 영향)

  • Kim, Seong-Oh;Choi, Byung-Jai;Lee, Jae-Ho;Sohn, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.400-420
    • /
    • 1998
  • We already know that it is very difficult to obtain an "isolated field" for direct bonding during the surgical exposure of unerupted teeth. The aim of this in-vitro study is to simulate the clinical situation of forced eruption and to evaluate the tensile strengths of preligatured button with several types of contamination which can happen during the surgical exposure of unerupted teeth. Four orthodontic direct bonding systems were used. ($Ortho-One^{TM}$, $Rely-a-Bond^{(R)}$, $Ortho-Two^{TM}$, Phase $II^{(R)}$) Each material was divided into four groups(n=20) : Group 1. (Control, no contamination), Group 2. (Rinse etching agent with saline instead of water), Group 3. (Blood contamination of etched surface for 30 seconds), Group 4. (Blood contamination of primed surface for 30 seconds) 320 bovine anterior permanent teeth were divided into the above mentioned 16 groups. Enamel surface was flattened and ground under water coolant. Pre-ligatured buttons were prepared to the same form. (Cut 0.25 ligature wire 10 cm in length. Twist the ligature wire 30 times clockwise. Mark the wire 15mm and 35mm points from button. Make a loop sticking two points together and twist the loop 6 times counterclockwise.) The bonded specimens were stored at $37^{\circ}C$ saline solution for 3 days. Then the tensile strength of each sample was measured with Instron universal testing machine, crosshead speed of 0.5mm/min. The following results were obtained: 1. As compared to control groups (Group 1) of each material, Rely-a-Bond had a significantly lower mean tensile strengths than other material. (p<0.01) 2. In Group 2. of Ortho-One and Rely-a-Bond, the mean tensile strengths decreased about 7.7% and 11.1%, respectively with statistical significances. (p<0.05) 3. In Group 2. of Ortho-Two and Phase II, the mean tensile strengths did not decrease. 4. In Group 3. of Ortho-One, Rely-a-Bond, Ortho-Two, and Phase II, the mean tensile strengths decreased about 60.8%, 56.1%, 60.2%, and 46.0%, respectively with statistical significances. (p<0.01) 5. In Group 4. of Ortho-One and Rely-a-Bond, the mean tensile strengths did not decrease. 6. In Group 4. of Ortho-Two and Phase II, the mean tensile strengths were decreased about 20.95% and 22.28%, respectively with statistical significances. (p<0.01) There were formations of a hump shaped mass from bonding resin under blood contamination which disturbed direct bonding procedure. According to Reynolds, the proper bond strength for clinical manipulation should be at least 45N or about 4.5Kg.F. According to these results, it can be concluded that Ortho-One could be used during surgical exposure of unerupted teeth. In any case, blood contamination of the etched surface should be avoided, but the blood contamination of primed surface of Ortho-One may not decrease bond strength. Just 'blowing-out' is enough to remove blood from primed surface of Ortho-One. You can verify the clean surface of the primer of Ortho-One after blowing out the blood contamination.

  • PDF

Structural characteristics of Humboldt Range, northwest Nevada, U. S. A. (미국 북서 네바다주 험볼트 산맥의 구조분석)

  • 정상원
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.131-148
    • /
    • 1999
  • Characteristics and complex structures in the northwest Nevada, U.S.A. are de-veloped due to relative tectonic movement of major tectonostratigraphic terranes. Theresearch area is composed of autochthonous rocks of both Early Triassic Koipato Group and Middle Triassic Star Peak Group, which is located in the Humboldt Range, northwest Nevada, U.S.A. The present research is focused on deformation history, related fabric development, and state of regional paleostress during the Jurassic to Late Cretaceous. The Triassic autochthonous rocks in the Humboldt Range, Nevada, U.S.A. display polyphase deformation due to E- to ESE-directed tectonic transport of the Fencemaker allochthon over autochthonous rocks of the Humboldt Range. Structures involving the Mesozoic foreland deformation are development of intense foliation, different styles of folds, minor thrusts, transposed layering, and strong mylonitization. These tectonic structures are mostly developed along the western flank of the Humboldt Range, and are reported as the first deformation of the Mesozoic foreland in the Humboldt Range, Nevada, U.S.A. Regional principal stress(${\sigma}_1$) is interpreted to be E to ESE between the Jurassic and Early Cretaceous on the basis of orientations of strongly developed $D_1$ structures. The deformation during the Middle to Late Cretaceous, is characterized by development of consistent N- to NNE-trending metamorphic quartz veins, and shear zones parallel to pre-existing $D_1$ foliation. Orientations of metamorphic quartz veins as well as other kinematic indicators are N to NNE and are interpreted as those of regional principal stress(${\sigma}_1$) during the Late Cretaceous. The sense of shear applied in the Humbololt Range is dextral and is caused by reactivation of early-formed $D_1$ structures. These results reflect counterclockwise rotation of regional principal paleostress in the Humboldt Range from the Jurassic to Late cretaceous. Finally, development of both shear band cleavage and S/C mylonitic fabrics indicates that the shear zones in the Humboldt Range reflect involvement of enhanced non-coaxial flow during bulk shortening in mylonitic formation.

  • PDF

Distribution Characteristics and Management Plan of the Wisteria Habitat (No. 176 natural monument) of Beomeosa Temple in Busan (부산 범어사 등나무군락지의 등나무 분포 특성 및 관리방안)

  • Lee, Chang-Woo;Oh, Hae-Seong;Lee, Cheol-Ho;Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.2
    • /
    • pp.77-86
    • /
    • 2017
  • A study on the population ecology of gregarious Wisteria habitat was conducted in Beomeosa temple, Busan. The area has been protected since it was designated as No. 176 natural monument in 1966. Such a large habitat of native wisteria (Wisteria floribunda DC.) in Korea is very rare so that it has a very high academic value. However, there are no high-resolution researches on the distribution and ecology of wisteria in the Gregarious Wisteria Habitat of Beomeosa Temple. The study aimed to identify the distribution and characteristics of wisteria populations in the Wisteria habitat. The study identified the distribution of Wisteria, RCC, the climbing direction, the plant and flora in the research area in the Gregarious Wisteria Habitat of Beomeosa Temple in Busan and the surrounding areas based on an on-site research. As a result, the total number of the wisteria populations in the research area was confirmed to be 1,158 and the RCC of wisteria was on average 69.0 mm (${\pm}45.5$) and in maximum 365 mm. In terms of the climbing direction, the number of wisteria that climbs clockwise or counterclockwise was determined to be 40. It was identified that there are 28 taxa of the climbing plant species and the wisteria of the same kind was the most favorable. The populations were found to be dispersed adjacent to the valleys, and were found to be maintained by constant disturbance. 76.6 % of the population was found to be distributed in the valley forest, and the Carpinus tschonoskii-Pseudosasa japonica forest, Pueraria lobata community and Pinus densiflora forest were found to be relatively dispersed. The study proposed to conduct the follow-up researches to preserve the wisteria that is spreading in this research area, the wisteria with the highest RCC and regional habitat through continuous monitoring; and maintain the protection area of No. 176 natural monument; and discussed the management measures and approaches that reflect the habitat.

Automated patient set-up using intensity based image registration in proton therapy (양성자 치료 시 Intensity 기반의 영상 정합을 이용한 환자 자동화 Set up 적용 방법)

  • Jang, Hoon;Kim, Ho Sik;Choe, Seung Oh;Kim, Eun Suk;Jeong, Jong Hyi;Ahn, Sang Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.97-105
    • /
    • 2018
  • Purpose : Proton Therapy using Bragg-peak, because it has distinct characteristics in providing maximum dosage for tumor and minimal dosage for normal tissue, a medical imaging system that can quantify changes in patient position or treatment area is of paramount importance to the treatment of protons. The purpose of this research is to evaluate the usefulness of the algorithm by comparing the image matching through the set-up and in-house code through the existing dips program by producing a Matlab-based in-house registration code to determine the error value between dips and DRR to evaluate the accuracy of the existing treatment. Materials and Methods : Thirteen patients with brain tumors and head and neck cancer who received proton therapy were included in this study and used the DIPS Program System (Version 2.4.3, IBA, Belgium) for image comparison and the Eclipse Proton Planning System (Version 13.7, Varian, USA) for patient treatment planning. For Validation of the Registration method, a test image was artificially rotated and moved to match the existing image, and the initial set up image of DIPS program of existing set up process was image-matched with plan DRR, and the error value was obtained, and the usefulness of the algorithm was evaluated. Results : When the test image was moved 0.5, 1, and 10 cm in the left and right directions, the average error was 0.018 cm. When the test image was rotated counterclockwise by 1 and $10^{\circ}$, the error was $0.0011^{\circ}$. When the initial images of four patients were imaged, the mean error was 0.056, 0.044, and 0.053 cm in the order of x, y, and z, and 0.190 and $0.206^{\circ}$ in the order of rotation and pitch. When the final images of 13 patients were imaged, the mean differences were 0.062, 0.085, and 0.074 cm in the order of x, y, and z, and 0.120 cm as the vector value. Rotation and pitch were 0.171 and $0.174^{\circ}$, respectively. Conclusion : The Matlab-based In-house Registration code produced through this study showed accurate Image matching based on Intensity as well as the simple image as well as anatomical structure. Also, the Set-up error through the DIPS program of the existing treatment method showed a very slight difference, confirming the accuracy of the proton therapy. Future development of additional programs and future Intensity-based Matlab In-house code research will be necessary for future clinical applications.

  • PDF

Characteristics of Beach Change and Sediment Transport by Field Survey in Sinji-Myeongsasimni Beach (신지명사십리 해수욕장에서 현장조사에 의한 해빈변화와 퇴적물이동 특성)

  • Jeong, Seung Myong;Park, Il Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 2021
  • To evaluate the causes of beach erosion in Sinji-Myeongsasimni Beach, external forces, such as tides, tidal currents, and waves, were observed seasonally from March 2019 to March 2020, and the surface sediments were analyzed for this period. In addition, the shoreline positions and beach elevations were regularly surveyed with a VRS GPS and fixed-wing drone. From these field data, the speed of the tidal currents was noted to be insufficient, but the waves were observed to af ect the deformation of the beach. As the beach is open to the southern direction, waves of heights over 1 m were received in the S-SE direction during the spring, summer, and fall seasons. Large waves with heights over 2 m were observed during typhoons in summer and fall. Because of the absence of typhoons for the previous two years from July 2018, the beach area over datum level (DL) as of July 2018 was greater by 30,138m2 compared with that of March 2019, and the beach area as of March 2020 decreased by 61,210m2 compared with that of March 2019 because of four typhoon attacks after July 2018. The beach volume as of March 2019 decreased by 5.4% compared with that of July 2018 owing to two typhoons, and the beach volume as of September 2019 decreased by 7.3% because of two typhoons during the observation year. However, the volume recovered slightly by about 3% during fall and winter, when there were no high waves. According to the sediment transport vectors by GSTA, the sediments were weakly influxed from small streams located at the center of the beach; the movement vectors were not noticeable at the west beach site, but the westward sediment transport under the water and seaward vectors from the foreshore beach were prominently observed at the east beach site. These patterns of westward sediment vectors could be explained by the angle between the annual mean incident wave direction and beach opening direction. This angle was inclined 24° counterclockwise with the west-east direction. Therefore, the westward wave-induced currents developed strongly during the large-wave seasons. Hence, the sand content is high in the west-side beach but the east-side beach has been eroded seriously, where the pebbles are exposed and sand dune has decreased because of the lack of sand sources except for the soiled dunes. Therefore, it is proposed that efforts for creating new sediment sources, such as beach nourishment and reducing wave heights via submerged breakwaters, be undertaken for the eastside of the beach.

Migration of the Dokdo Cold Eddy in the East Sea (동해 독도 냉수성 소용돌이의 이동 특성)

  • KIM, JAEMIN;CHOI, BYOUNG-JU;LEE, SANG-HO;BYUN, DO-SEONG;KANG, BOONSOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.351-373
    • /
    • 2019
  • The cold eddies around the Ulleung Basin in the East Sea were identified from satellite altimeter sea level data using the Winding-Angle method from 1993 to 2015. Among the cold eddies, the Dokdo Cold Eddies (DCEs), which were formed at the first meandering trough of the East Korea Warm Current (EKWC) and were pinched off to the southwest from the eastward flow, were classified and their migration patterns were analyzed. The vertical structures of water temperature, salinity, and flow velocity near the DCE center were also examined using numerical simulation and observation data provided by the Hybrid Coordinate Ocean Model and the National Institute of Fisheries Science, respectively. A total of 112 DCEs were generated for 23 years. Of these, 39 DCEs migrated westward and arrived off the east coast of Korea. The average travel distance was 250.9 km, the average lifespan was 93 days, and the average travel speed was 3.5 cm/s. The other 73 DCEs had moved to the east or had hovered around the generated location until they disappeared. At 50-100 m depth under the DCE, water temperature and salinity (T < $5^{\circ}C$, S < 34.1) were lower than those of ambient water and isotherms made a dome shape. Current faster than 10 cm/s circulates counterclockwise from the surface to 300 m depth at 38 km away from the center of DCE. After the EKWC separates from the coast, it flows eastward and starts to meander near Ulleungdo. The first trough of the meander in the east of Ulleungdo is pushed deep into the southwest and forms a cold eddy (DCE), which is shed from the meander in the south of Ulleungdo. While a DCE moves westward, it circumvents the Ulleung Warm Eddy (UWE) clockwise and follows U shape path toward the east coast of Korea. When the DCE arrives near the coast, the EKWC separates from the coast at the south of DCE and circumvents the DCE. As the DCE near the coast weakens and extinguishes about 30 days later after the arrival, the EKWC flows northward along the coast recovering its original path. The DCE steadily transports heat and salt from the north to the south, which helps to form a cold water region in the southwest of the Ulleung Basin and brings positive vorticity to change the separation latitude and path of the EKWC. Some of the DCEs moving to the west were merged into a coastal cold eddy to form a wide cold water region in the west of Ulleung Basin and to create a elongated anticlockwise circulation, which separated the UWE in the north from the EKWC in the south.

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.

Distributional Characteristics of Fault Segments in Cretaceous and Tertiary Rocks from Southeastern Gyeongsang Basin (경상분지 남동부 일대의 백악기 및 제3기 암류에서 발달하는 단층분절의 분포특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.109-120
    • /
    • 2018
  • The distributional characteristics of fault segments in Cretaceous and Tertiary rocks from southeastern Gyeongsang Basin were derived. The 267 sets of fault segments showing linear type were extracted from the curved fault lines delineated on the regional geological map. First, the directional angle(${\theta}$)-length(L) chart for the whole fault segments was made. From the related chart, the general d istribution pattern of fault segments was derived. The distribution curve in the chart was divided into four sections according to its overall shape. NNE, NNW and WNW directions, corresponding to the peaks of the above sections, indicate those of the Yangsan, Ulsan and Gaeum fault systems. The fault segment population show near symmetrical distribution with respect to $N19^{\circ}E$ direction corresponding to the maximum peak. Second, the directional angle-frequency(N), mean length(Lm), total length(Lt) and density(${\rho}$) chart was made. From the related chart, whole domain of the above chart was divided into 19 domains in terms of the phases of the distribution curve. The directions corresponding to the peaks of the above domains suggest the directions of representative stresses acted on rock body. Third, the length-cumulative frequency graphs for the 18 sub-populations were made. From the related chart, the value of exponent(${\lambda}$) increase in the clockwise direction($N10{\sim}20^{\circ}E{\rightarrow}N50{\sim}60^{\circ}E$) and counterclockwise direction ($N10{\sim}20^{\circ}W{\rightarrow}N50{\sim}60^{\circ}W$). On the other hand, the width of distribution of lengths and mean length decrease. The chart for the above sub-populations having mutually different evolution characteristics, reveals a cross section of evolutionary process. Fourth, the general distribution chart for the 18 graphs was made. From the related chart, the above graphs were classified into five groups(A~E) according to the distribution area. The lengths of fault segments increase in order of group E ($N80{\sim}90^{\circ}E{\cdot}N70{\sim}80^{\circ}E{\cdot}N80{\sim}90^{\circ}W{\cdot}N50{\sim}60^{\circ}W{\cdot}N30{\sim}40^{\circ}W{\cdot}N40{\sim}50^{\circ}W$) < D ($N70{\sim}80^{\circ}W{\cdot}N60{\sim}70^{\circ}W{\cdot}N60{\sim}70^{\circ}E{\cdot}N50{\sim}60^{\circ}E{\cdot}N40{\sim}50^{\circ}E{\cdot}N0{\sim}10^{\circ}W$) < C ($N20{\sim}30^{\circ}W{\cdot}N10{\sim}20^{\circ}W$) < B ($N0{\sim}10^{\circ}E{\cdot}N30{\sim}40^{\circ}E$) < A ($N20{\sim}30^{\circ}E{\cdot}N10{\sim}20^{\circ}E$). Especially the forms of graph gradually transition from a uniform distribution to an exponential one. Lastly, the values of the six parameters for fault-segment length were divided into five groups. Among the six parameters, mean length and length of the longest fault segment decrease in the order of group III ($N10^{\circ}W{\sim}N20^{\circ}E$) > IV ($N20{\sim}60^{\circ}E$) > II ($N10{\sim}60^{\circ}W$) > I ($N60{\sim}90^{\circ}W$) > V ($N60{\sim}90^{\circ}E$). Frequency, longest length, total length, mean length and density of fault segments, belonging to group V, show the lowest values. The above order of arrangement among five groups suggests the interrelationship with the relative formation ages of fault segments.