• 제목/요약/키워드: counter-rotating vortices

검색결과 41건 처리시간 0.02초

쐐기형 단락요철이 설치된 덕트의 종횡비가 열/물질 전달에 미치는 영향 (Effects of Duct Aspect Ratios on Heat/Mass Transfer With Discrete V-Shaped Ribs)

  • 이동현;이동호;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1453-1460
    • /
    • 2003
  • The present study investigates the effects of rib arrangements and aspect ratios of a rectangular duct simulating the cooling passage of a gas turbine blade. Two different V-shaped rib configurations are tested with the aspect ratios (W/H) of 3 to 6.82. One is the continuous V-shaped rib configuration with $60^{\circ}$ attack angle, and the other is the discrete V-shaped rib configuration with $45^{\circ}$ attack angle. The square ribs with the pitch to height ratio of 10.0 are installed on the test section in a parallel arrangement for both rib configurations. Reynolds numbers based on the hydraulic diameter are changed from 10,000 to 30,000. A naphthalene sublimation method is used to measure local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices are generated in a duct, and high transfer region is formed at the center of the ribbed walls of the duct. However, for the discrete V-shaped rib configuration with $45^{\circ}$ attack angle, complex secondary flow patterns are generated in the duct due to its geometric feature, and more uniform heat/mass transfer distributions are obtained for all tested cases

  • PDF

디지털 홀로그래픽 입자유속계를 이용한 미세곡관 내부유동 측정 (Measurement of Flow inside Curved Microtube Using a Digital Micro Holographic Particle Velocimetry)

  • 김석;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.116-118
    • /
    • 2007
  • Three-dimensional (3D) velocity field information of a laminar flow in a curved micro tube of circular cross-section has been measured using a digital micro holographic particle tracking velocimetry (HPTV). The temporal evolution of instantaneous velocity field of a water flow in a curved micro tube of $100\;{\mu}\;m$ and $300\;{\mu}\;m$ in inner diameter was obtained. The 3D mean velocity field distribution was obtained quantitatively by statistical-averaging of instantaneous velocity fields. At low Dean number (De), a secondary flow was not generated in the curved tube. With increasing Dean number, the secondary flow constituted of two large-scale counter-rotating vortices was formed due to enhanced centrifugal force. To reveal the flow characteristics of high Dean numbers, trajectories of fluid particles were evaluated experimentally from the 3D velocity fields data measured by the HPTV technique. The present experimental results, especially the 3D particle trajectories, would be helpful to design and to understand the mixing phenomena in 3D curved passages of various curved micro-tubes or micro-channels.

  • PDF

마이크로 홀로그래픽 PTV를 이용한 미세곡관 내부 Dean 유동의 3차원 유동해석 (Micro Holographic PTV Analysis of Three-dimensional Dean Flows in a Curved Micro-tube)

  • 김석;이상준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.689-690
    • /
    • 2008
  • In the present study, a micro holographic PTV (HPTV) system was used to experimentally investigate the structure of 3D flow within a curved micro-tube with varying Dean number. The employed HPTV system incorporated a high-speed digital camera to measure the temporal evolution of the 3D velocity fields of micro-scale fluid flows. With increasing Dean number, flow in the curved tube is transformed from a steady flow to a secondary flow with two counter-rotating vortices. In this study, to analyze the 3D flow characteristics in the curved section of tube at a high Dean number, the trajectories of fluid particles were obtained experimentally using the whole 3D velocity field data obtained by the micro HPTV technique. The mean velocity field distribution was then obtained by ensemble averaging the instantaneous velocity fields. These results would be helpful in the design of various passages within micro-scale devices or micro-chips and in understanding the mixing phenomena that occur in curved conduits along the trajectories of fluid particles.

  • PDF

DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part I : 비반응 유동장 (Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part I : Non-Reacting Flowfield)

  • 원수희;정인석;최정열
    • 한국항공우주학회지
    • /
    • 제37권9호
    • /
    • pp.863-878
    • /
    • 2009
  • 초음속 주 유동내 연료의 수직분사에 따른 비정상 3차원 유동장을 DES 난류 모델을 이용해 모사하였다. 해석 결과는 시간에 따른 에디 거동 및 생성 빈도에 대해 실험과 비교되었으며, 에디 생성 메커니즘을 이해하기 위해 분사기 주변 와도에 대한 분석을 수행하였다. DES 난류 모델은 에디의 대류 특성을 비교적 정확하게 모사하고 있으나, 에디 생성빈도는 다소 과대 예측하고 있다. 분사기 상류 재순환 영역에서 엇회전하는 와류가 번갈아 떨어져 나가면서 에디 구조가 생성된다.

폭방향으로 분사되는 막냉각 제트의 3차원 유동특성 및 압력손실 (Three-dimensional flow and pressure loss of a film-cooling jets injected in spanwise direction)

  • 이상우;김용범
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1363-1375
    • /
    • 1996
  • Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate three-dimensional flow characteristics and total pressure losses of a row of film-cooling jets injected in spanwise direction. For several span-to-diameter ratios, experiments are performed in the case of three velocity ratios of 0.5, 1.0 and 1.5. The flow measurements show that downstream flow due to the injection is characterized by a single streamwise vortex instead of a pair of counter-rotating vortices, which appear in the case of streamwise injection, and the vortex strength strongly depends on the velocity ratio. Regardless of the velocity*y ratio, presence of the spanwise film-cooling jets always produces total pressure loss, which is pronounced when the velocity ratio is large. It has also been found that the production of the total pressure loss is closely related to the secondary vortical flow. In addition, effects of the span-to-diameter ratio on the flow and total pressure loss are discussed in detail.

터빈 기익 선단부에 설치된 냉각유로에서의 요철 배열에 따른 열전달 특성 (Heat Transfer Characteristics in a Leading Edge Cooling Channel of a Turbine Blade with Various Rib Arrangements)

  • 이동현;김경민;이동호;조형희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.459-466
    • /
    • 2005
  • The present study investigates the heat transfer characteristics of a triangular channel. Three different rib configurations are tested. The ribs are installed on two sides of the channel. The rib height (e) to channel hydraulic diameter is 0.079 and the rib-to-rib pitch (p) is 8 times of the rib height. The rotation number ranges from 0.0 to 0.1 while the Reynolds number is fixed at 10,000. The copper blocks with heaters are installed on the channel walls to measure the regionally averaged heat transfer coefficients. For the stationary $45^{\circ}$ and $135^{\circ}$ ribbed channels, a pair of counter rotating vortices is induced by the angled rib arrangements, and high heat transfer coefficients are obtained on the regions near the inner wall for the $45^{\circ}$ ribbed channel and near the leading edge for the $90^{\circ}$ ribbed channel. The heat transfer coefficients of angled ribbed channels are changed little with rotation, whereas those of the transverse ribbed channel are changed significantly with rotation.

  • PDF

횡분류(流)(橫噴流)에서 난류 비예흔합 화염의 화염날림에 대한 거대 와(渦)구조 혼합 모텔 적용 (A Large-scale Structural Mixing Model applied to Blowout of Turbulent Nonpremixed Jet Flames in a Cross Jet Flow)

  • 이기만;박정
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.133-140
    • /
    • 2002
  • This article presents an application of a large-scale structural mixing model(Broadwell et at. 1984) to the blowout of turbulent reacting cross flow jets. Experimental observations, therefore, aim to identify the existence of large-scale vortical structure exerting an important effect upon the flame stabilization. In the analysis of common stability curve, it is seen that the phenomenon of blowout are only related to the mixing time scale of the two flows. The most notable observation is that the blowout distance is traced at a fixed positions according to the velocity ratio at all times. Measurements of the lower blowout limits in the liftable flame are qualitatively in agreement with the blowout parameter $\xi$, proposed by Broadwell et al. Good agrement between the results calculated by a modified blowout parameter $\xi$'and the present experimental results confirms the important effect of large-scale structure in the stabilization feature of blowout.

고속 흐름에서의 충격파와 난류경계층의 상호작용에 관한 수치적 연구 (A Numerical Study on Shock Wave Turbulent Boundary Layer Interactions in High-Speed Flows)

  • 문수연;손창현;이충원
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.322-329
    • /
    • 2001
  • A study of the shock wave turbulent boundary layer interaction is presented. The focus of the study is the interactions of the shock waves with the turbulent boundary layer on the falt plate. Three examples are investigated. The computations are performed, using mixed explicit-implicit generalized Galerkin finite element method. The linear equations at each time step are solved by a preconditioned GMRES algorithm. Numerical results indicate that the implicit scheme converges to the asymptotic steady state much faster than the explicit counterpart. The computed surface pressures and skin friction coefficients display good agreement with experimental data. The flowfield manifests a complex shock wave system and a pair of counter-rotating vortices.

평판 사이 정방형실린더 주위의 난류 유동에 대한 LES (Large-Eddy Simulation of Turbulent Flow Past a Square Cylinder Confined in a Channel)

  • 김도형;양경수
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.261-268
    • /
    • 2002
  • Turbulent flow past a square cylinder confined in a channel is numerically investigated by Large Eddy Simulation(LES). The main objectives of this study are to verify the experimental results of Nakagawa et al.[Exp. in Fluids, Vol. 27, 3, pp. 284∼294, 1999] by LES and to obtain related flow information in detail. The LES results obtained are in excellent agreement with the experiment both qualitatively and quantitatively. The passive paticles numerically released into the flow field clearly show the barman vortex street. However, the vortices shed from the cylinder are significantly affected by the presence of the plates. Futhermore, periodic and alternating vortex-rollups are observed in the vicinity of the plates. The rolled-up vortex is convected downstream together with the corresponding Karman vortex forming a counter-rotating vortex pair. It is also revealed that the cylinder greatly enhances mixing process of the flow.

엔진의 흡기 공기량 조절용 스로틀 밸브에서의 유동 특성 (Flow Characteristics inside a Throttle Valve Used to Control the Intake Air Flow in Engines)

  • 김성초;김철
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.91-98
    • /
    • 1999
  • This paper describes the air flow characteristics inside the throttle valve. Tow-dimensional steady incompressible Navier-Strokes equation are solved numerically with embedding the conceopt of the artificial compressibility and adopting the Baldwin-Lomax turbulence model. With varying the valve opening angles(the Reynolds number )such as 15$^{\circ}$(5000) , 45$^{\circ}$(3000) , 75$^{\circ}$(7000) and 90$^{\circ}$(10000), respectively. tow cases, with a valve shaft and without one, are analysed. The pressure loss between the entrance and exit is severe at 15$^{\circ}$, 100 times as larger as that of 90$^{\circ}$ case, which also depends much on the existece of the valve shaft. The counter rotating vortices are formed over the valve plate with the shaft at only 75$^{\circ}$. They are smally and very large scale in front and back of the valve shaft , respectively. The velocity profiles of 15$^{\circ}$ and 90$^{\circ}$ at the exit are almost symmetric to the horizontal center line, however, the symmetricity is no longer maintained at 45$^{\circ}$ and 75$^{\circ}$ , and in addition, the flow at 75$^{\circ}$ is enforced a lot below center line. The pressure distribution on the walls is largely changed near the valve shaft, and its magnitude becomes great as the valve angle decreases.

  • PDF