• Title/Summary/Keyword: counter-design

Search Result 487, Processing Time 0.036 seconds

Assessment of the Counter-Flow Thrust Vector Control in a Three-Dimensional Rectangular Nozzle (3차원 직사각형 노즐에서 역유동 추력벡터 제어 평가)

  • Wu, Kexin;Kim, Tae Ho;Kochupulickal, James Jintu;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.34-46
    • /
    • 2020
  • Computational assessment of gas-dynamic characteristics is explored for a three-dimensional counter-flow thrust vector control system in a rectangular supersonic nozzle. This convergent-divergent nozzle is designed by Method of Characteristics and its design Mach number is specially set as 2.5. Performance variations of the counter-flow vector system are illustrated by varying the gap height of the secondary flow duct. Key parameters are quantitatively analyzed, such as static pressure distribution along the centerline of the upper suction collar, deflection angle, secondary mass flow ratio, and resultant thrust coefficient. Additionally, the streamline on the symmetry plane, three-dimensional iso-Mach number surface contour, and three-dimensional turbulent kinetic energy contour are presented to reveal overall flow-field characteristics in detail.

A Result Analysis on Field Test for Localization Development of Axle Counter System (Axle Counter System 국산화 개발을 위한 현장시험 결과분석)

  • Ko, Joon-Young;Park, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6214-6220
    • /
    • 2015
  • A track circuit has used stably more than 100 years for detecting train position, but solution of track circuit sort circuit incapacity due to a rust is necessary for side line in station yard, coast line and level crossing for conventional line in rural line. Domestically, Axle Counter System(ACS) has partially used for Hot Box System for high speed line and turnout for CBTC system. In contrast, most of countries has used ACS not only trunk line but also rural line and its application has increased for metro, electric car and industrial railway. In this paper, we has verified the operating status of ACS which installed with existing track circuit through log analsis to implement pilot application in mail track and turnout in station yard. And interface test with interlocking system has conducted at Obong shunting yard, as well as Cheongju station and has analyzed test result. Based on a test result, we made fail safe design, manufacturing skill and established system requirement specification for the smooth operation and maintenance.

A Design of Single Pixel Photon Counter for Digital X-ray Image Sensor (X-ray 이미지 센서용 싱글 픽셀 포톤 카운터 설계)

  • Baek, Seung-Myun;Kim, Tae-Ho;Kang, Hyung-Geun;Jeon, Sung-Chae;Jin, Seung-Oh;Huh, Young;Ha, Pan-Bong;Park, Mu-Hun;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.322-329
    • /
    • 2007
  • A single pixel photon counting type image sensor which is applicable for medical diagnosis with digitally obtained image and industrial purpose has been designed with $0.18{\mu}m$ triple-well CMOS process. The designed single pixel for readout chip is able to be operated by single supply voltage to simplify digital X-ray image sensor module and a preamplifier which is consist of folded cascode CMOS operational amplifier has been designed to enlarge signal voltage(${\Delta}Vs$), the output voltage of preamplifier. And an externally tunable threshold voltage generator circuit which generates threshold voltage in the readout chip has been newly proposed against the conventional external threshold voltage supply. In addition, A dark current compensation circuit for reducing dark current noise from photo diode is proposed and 15bit LFSR(Linear Feedback Shift Resister) Counter which is able to have high counting frequency and small layout area is designed.

Experimental Study on the Unsteady Flow Characteristics for the Counter-Rotating Axial Flow Fan

  • Cho, L.S.;Lee, S.W.;Cho, J.S.;Kang, J.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.790-798
    • /
    • 2008
  • Counter-rotating axial flow fan(CRF) consists of two counter-rotating rotors without stator blades. CRF shows the complex flow characteristics of the three-dimensional, viscous, and unsteady flow fields. For the understanding of the entire core flow in CRF, it is necessary to investigate the three-dimensional unsteady flow field between the rotors. This information is also essential to improve the aerodynamic characteristics and to reduce the aerodynamic noise level and vibration characteristics of the CRF. In this paper, experimental study on the three-dimensional unsteady flow of the CRF is performed at the design point(operating point). Flow fields in the CRF are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. The phase-locked averaged hot-wire technique utilizes the inclined hot-wire, which rotates successively with 120 degree increments about its own axis. Three-dimensional unsteady flow characteristics such as tip vortex, secondary flow and tip leakage flow in the CRF are shown in the form of the axial, radial and tangential velocity vector plot and velocity contour. The phase-locked averaged velocity profiles of the CRF are analyzed by means of the stationary unsteady measurement technique. At the mean radius of the front rotor inlet and the outlet, the phase-locked averaged velocity profiles show more the periodical flow characteristics than those of the hub region. At the tip region of the CRF, the axial velocity is decreased due to the boundary layer effect of the fan casing and the tip vortex flow. The radial and the tangential velocity profiles show the most unstable and unsteady flow characteristics compared with other position of rotors. But, the phase-locked averaged velocity profiles of the downstream of the rear rotor show the aperiodic flow pattern due to the mixture of the front rotor wake period and the rear rotor rotational period.

  • PDF

Development of Microfluidic Radioimmunoassay Platform for High-throughput Analysis with Reduced Radioactive Waste

  • Jin-Hee Kim;So-Young Lee;Seung-Kon Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 2022
  • Microfluidic radioimmunoassay (RIA) platform called µ-RIA spends less reagent and shorter reaction time for the analysis compared to the conventional tube-based radioimmunoassay. This study reported the design of µ-RIA chips optimized for the gamma counter which could measure the small samples of radioactive materials automatically. Compared with the previous study, the µ-RIA chips developed in this study were designed to be compatible with conventional RIA test tubes. And, the automatic gamma counter could detect radioactivity from the 125I labeled anti-PSA attached to the chips. Effects of the multi-layer microchannels and two-phase flow in the µ-RIA chips were investigated in this study. The measured radioactivity from the 125I labeled anti-PSA was linearly proportional to the number of stacked chips, representing that the radioactivity in µ-RIA platform could be amplified by designing the chips with multi-layers. In addition, we designed µ-RIA chip to generate liquid-gas plug flow inside the microfluidic channel. The plug flow can promote binding of the biomolecules onto the microfluidic channel surface with recirculation in the liquid phase. The ratio of liquid slug and air slug length was 1 : 1 when the 125I labeled anti-PSA and the air were injected at 1 and 35 µL/min, respectively, exhibiting 1.6 times higher biomolecule attachment compared to the microfluidic chip without the air injection. This experimental result indicated that the biomolecular reaction was improved by generating liquid-gas slugs inside the microfluidic channel. In this study, we presented a novel µ-RIA chips that is compatible with the conventional gamma counter with automated sampler. Therefore, high-throughput radioimmunoassay can be carried out by the automatic measurement of radioactivity with reduced radiowaste generation. We expect the µ-RIA platform can successfully replace conventional tube-based radioimmunoassay in the future.

Desgin Method of the Quartz Crystal Thickness Monitor and its Characteristics (수정 진동자를 이용한 박막두께 감시 장치의 제작과 특성)

  • 서용운;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.10
    • /
    • pp.719-723
    • /
    • 1987
  • This paper shows the design method and the experimental results of the thin film thickeness monitor. The thin film thickness monitor uses 6 MHz quartz crystal in sensor and cooling system for the fine operation. The thin film thickness are measured by the digital frequrency counter.

  • PDF

A Study of the Apply Proximity Sensor for Improved Reliability Axle Detection (열차 차축검지 신뢰성 향상을 위한 근접센서 방식 Axle Counter 적용 연구)

  • Park, Jae-Young;Choi, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5534-5540
    • /
    • 2015
  • This In the railway signaling system, applications of axle counter in addition to track circuit goes on increasing for detecting train position. Consequently, this paper compares sensor methods of axle counter with between geo-magnetism method and proximity sensor method. And it presents differences and results, to improve reliabilities of train detection and axle counting. Also, this article presents an applied result which is based on field experience, with regard to installation, considering attachment condition of sensor part for accurate axle counting. This study acquires expandability that is able to perform not only axle counting function but also various other functions (direction detection of train, speed detection of train, and so on). It was a result of a change of design in order to judge phase difference of sensors, to improve reliability of axle counting. Furthermore, it does not subordinate to characteristics (type, weight of train). And it is confirmed that the omission of axle counting was not occurred in 350km/h. This was the result of Lab test after the construction of transfer equipment of trial axle and Test Bed for axle counting. Both of them are self-productions. Through this, it prepares foundation which is able to apply not only to train detection but also to speed of passing trains, formation number of trains, detector locking condition - when the train passes the section of switch point, and level crossing devices. Furthermore, it would be judged to contribute safety train operation if proximity sensor method applies to the whole railway signaling system from now on.

An Experimental Study on Heat Transfer Characteristics and Pressure Drop in Micro Plated Heat Exchangers with S-shape of Microchannel (S 형상의 마이크로 채널을 가진 마이크로 판형 열교환기의 열전달 특성 및 압력강하에 관한 실험적 연구)

  • Seo, Jang-Won;Kim, Yoon-Ho;Moon, Chung-Eun;Lee, Kyu-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1876-1881
    • /
    • 2007
  • The micro plated heat exchangers were designed to transfer more heat/volume or mass than previous heat exchangers within the context of the design constraints specified. The increase of the surface-to-volume ratio results in an increase of the interfacial area. This enhances considerably the performance of a heat exchanger. This can be an important component in a wide range of applications fuel cell, aerospace, automotive, electronic system and home heating, etc). In this study, the performance evaluation of micro plated heat exchangers under the counter flows with straight and S-shaped channel are carried out. The pressure drop as well as inlet and outlet fluid temperature were measured at steady state under various operating conditions and the total heat transfer rate were also calculated.

  • PDF

Design And Implementation of X-Band Frequency Synthesizer for Radar Transceiver (Radar Transceiver용 X-밴드 PLL 주파수 합성기 설계 및 제작)

  • Lee, Hyun-Soo;Park, Dong-Kook
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.137-140
    • /
    • 2005
  • A frequency synthesizer of 10 GHz $\sim$ 11 GHz for FMCW radar is designed and implemented by the form of indirect frequency synthesizer of a single loop structure. The synthesizer uses a high speed digital PLL chip. It is difficult to divide directly by using a program counter of PLL chip because the output frequency of VCO is 10 GHz $\sim$ 11 GHz, so we lower the frequency to 625 MHz $\sim$ 687.5 MHz by using a prescaler, and then divide the frequency by the program counter. The output frequency sweep of VCO from 10 GHz to 11 GHz is measured.

  • PDF