• Title/Summary/Keyword: counter ions

Search Result 80, Processing Time 0.023 seconds

Counter Ion Effect on Photoinduced Electron Transfer Reaction between Ruthenium Complexes

  • Sonoyama, Noriyuki;Kaizu, Youkoh
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.481-486
    • /
    • 1995
  • Quenching experiments by photoinduced electron transfer between a charged donor and a neutral acceptor were carried out in acetonitrile, dichloromethane and mixed solvents of acetonitrile and dichloromethane. Tris(2, 2'-bipyridine) ruthenium(II) ($[Ru(bpy)_3]^{2+}$) which has 2+ charge and dicyanobis (2, 2'-bipyridine) ruthenium(II) ($Ru(bpy)_2(CN)_2$) which has no charge were used as electron donors, and a series of tris(${\beta}$-diketonato) ruthenium (III) was used as acceptor. In dichloromethane, $[Ru(bpy)_3]^{2+}$ and its counter ions ($ClO{_4}^-$) form ion pair. In the estimate of ${\Delta}G$ of electron transfer, the electrostatic potential between counter ions and product ion pair produced by electron transfer must be taken into account. A similar effect of counter ions was found in mixed solvents of 10, 30, 50, 70 and 90% acetonitrile ratio in volume. The effect of counter ion on ${\Delta}G$ became smaller with the increase in acetonitrile ratio. The result in mixed solvents suggests that $[Ru(bpy)_3]^{2+}$ and its counter ions form ion pair even in 90% acetonitrile solution.

  • PDF

The Spectral and Thermal Properties of Styrylquinolium Salts for Disc-Recordable Dyes

  • Song, Dong-Hyun;Kim, Jae-Pil;Lee, Chul-Joo;Park, Ki-Hong
    • Journal of Photoscience
    • /
    • v.8 no.3_4
    • /
    • pp.113-117
    • /
    • 2001
  • Several styrylquinolium salts were synthesized to investigate their absorption and thermal properties, which had five different p-aminobenzene units and three different counter ions (iodide, perchlorate, and hexafluorophosphorate anion), respectively. Hydroxy, methoxy, and methyl group in the meta position to the amino group led to bathochromic shift, while Ν-ethyl-Ν-chloroethylamino unit instead of Ν,Ν-diethylamino unit resulted in hypsochromic shift. A dye having a methoxy group in the meta position to the amino group had the highest molar extinction coefficient ($\xi$), while a dye carrying chloro group in Ν-alkyl chains had the lowest $\xi$. The type of counter ions had no effect on spectral properties like the maximum absorption wavelength and $\xi$. All styryl dyes had exothermic peaks at decomposition in DSC curves. Among these styryl dyes, S2 series with perchlorate anions showed the strongest exothermic decomposition. From TGA spectra, S3 series with hexafluorophosphorate anions had the best thermal stability and the sharpest threshold at thermal decomposition.

  • PDF

Effect of Protonic Acids on the Reaction Rate in Chemical Polymerization of Polyaniline (폴리아닐린의 화학적 중합 시 반응속도에 미치는 양성자산의 영향)

  • Hong, Jang-Hoo;Jang, Beom Soon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.684-688
    • /
    • 2005
  • Aniline was polymerized in various protonic acid (HF, HC1, HBr, HI, $H_2SO_4$) aqueous solutions with different acidity. During the reaction, the dimer formation and the reaction rate were examined as functions of acidity (pH) and the size of counter ions. Open-circuit potential measurements were carried out to investigate the effect of protonic acid on the reaction rate. The results showed that polymerization rate in HF aqueous solution was very slow and polymerization did not occur in HI aqueous solution. These results were explained in terms of acidity and power of oxidation. The ratio of formation of dimers varied with the kind of protonic acid, and the results were explained with the nucleophilicity, solvation effect, and mobility of counter ions.

Dispersion of Aqueous $Al_2O_3$Suspensions with Electrolytes; Influence of the Counter Ion

  • Cecile Pagnoux;Richard Laucournet;Thierry Chartier;Baumard, Jean-Francois
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.280-285
    • /
    • 2000
  • The electrolyte, $(HO)_2C_6H_2(SO_3Na)_2H_2O $(Tiron), disperses efficiently alumina powder in aqueous media and stable suspensions with 60 vol% solid loading can be prepared. The strong adsorption of this additive is mainly due to the ability of the molecule to form chelate rings with the particle surface but electrostatic interactions between the surface charge and the anionic dispersant strongly influence the amount of Tiron adsorbed. By using a cationic exchange route to substitute the counter ion which neutralizes the sulfonate groups, new molecules of dispersant have been prepared, either with mineral cations as $Li^+,\; Na+^,\; NH_4^\;+$, or with organic cations as counter ion but organic counter ions lead to less to less viscous suspensions than $Na^+$ in particular when the number of carbon atoms of the aliphatic chain increases from 1 to 3.

  • PDF

Dynamic Characteristics of Ionic-Polymer-Metal-Composite (IPMC의 동적 특성)

  • Jeon, J.H.;Shin, D.G.;Lee, K.H.;Oh, I.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.356-359
    • /
    • 2005
  • Ionic-polymer-metal-composite(IPMC), one of new actuation materials of electroactive polymers plated with noble metallic electrodes is known for the fast bending upon electric field. The IPMC strip bends towards anode under electrical field. It has many merits of low driving voltage, quick responsiveness, high durability, possibility of miniaturizability. In this paper, we studied for developing the large deflection of IPMC according several fabricating parameters. We measured the large deflection by the different process of sandpaper and sandblasting in surface treatment, the initial compositing process and the surface electroding process, and the different counter ions in ion exchanging process. In fundamental, the displacement of IPMC strip depends on voltage magnitude and applied signal frequency and its maximum deformation is observed at a critical frequency, resonant frequency.

  • PDF

Hydrolysis of p-Nitrophenyl Acetate and p-Nitrophenyldiphenyl Phosphate in Micellar Solution by N-Chloro Compounds : Involvement of Counter Ions in Micellar Catalysis

  • 박병덕;이윤식
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.938-945
    • /
    • 1995
  • Hydrolysis of p-nitrophenyl acetate (PNPA) and p-nitrophenyldiphenyl phosphate (PNPDPP) by N-chloro compounds in micellar solution were studied. N,N'-dichloroisocyanuric acid sodium salt (DCI) in cetyltrimethylammonium chloride (CTACl) micellar solution gave pseudo first-order kinetics. But, DCI in cetyltrimethylammonium bromide (CTABr) micellar solution showed typical series first-order kinetics - fast hydrolysis of the esters and concomitant slow decay of the hydrolyzed product, p-nitrophenolate. The hydrolysis rate was decreased as the hydrophobicity of N-chloro compounds was increased, which is the opposite trend to the usual bimolecular micellar reaction. This curious behavior of the N-chloro compounds in the catalytic hydrolysis of PNPA and PNPDPP in a cationic micellar system can be best explained by participation of counter ions of the surfactants during hydrolysis.

Recent Developments in Characterization of Ion-Exchange Membrane Processes: Impedance Spectroscopy for a Concentration Polarized Boundary Layer

  • Park, Jin-Soo;Moon, Seung-Hyeon
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.03a
    • /
    • pp.1-11
    • /
    • 2004
  • Ion-exchange membranes have been widely used in various applications such as diffusion dialysis, electrolysis, electrodialysis, fuel cell etc [1-2]. When an electric current passes through the membrane system, the current is carried by both positive and negative ions in the bulk solution phases, whereas it is carried mainly by the counter-ions in the membrane. (omitted)

  • PDF

Electrochemical properties of Pt electrodes fabricated by other methode as counter electrode of DSC (염료감응형 태양전지의 상대전극용 Pt의 제조방법에 따른 전기화학적 특성)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2016-2018
    • /
    • 2005
  • Dye-sensitized solar cell (DSC) consist of oxidation semiconduction electrode, electrolyte and counter electrode. Among these, Pt as counter electrode of DSC plays a role in helping redox reaction of iodine ions in electrolyte, also, transferring electrons into electrolyte. In this case, it is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, electrochemical behavior of the electro-plated Pt electrode was compared with that of the sputtered Pt electrode, using cyclic-voltammetry and impedance spectroscopy (PARSTATE 2273, by AMETEK). Surface morphology of Pt electrode was investigated by AFM (XE-100, by PSIA). As a result, it was considered that electrochemical properties of sputtered Pt electrode is superior to that of electro-plated Pt electrode.

  • PDF

Influence of counter anions on metal separation and water transport in electrodialysis treating plating wastewater

  • Oh, Eunjoo;Kim, Joohyeong;Ryu, Jun Hee;Min, Kyung Jin;Shin, Hyun-Gon;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.201-206
    • /
    • 2020
  • Electrodialysis (ED) is used in wastewater treatment, during the processing and recovery of beneficial materials, to produce usable water. In this study, sulfate and chlorine ions, which are the anions majorly used for electroplating, were studied as factors affecting the recovery of copper, nickel and water from wastewater by electrodialysis. Although the removal rates of copper and nickel ions were slightly higher with the use of chlorine ions than of sulfate ions, the removal efficiencies were above 99.9% under all experimental conditions. The metal ions of the plating wastewater flowed through the ion exchange membrane of the diluate tank and the concentrate tank while all the water moved together due to electro-osmosis. The migration of water from the diluate tank to the concentrate tank was higher in the presence of a monovalent chloride ion compared to that of a divalent sulfate ion. When sulfate was the anion used, the recoveries of copper and nickel increased by about 25% and 30%, respectively, as compared to the chloride ion. Therefore, when divalent ions such as sulfate are present in the electrodialysis, it is possible to reduce the movement amount of water and highly concentrate the copper and nickel in the plating wastewater.

Removal of Toxic Pollutants from Aqueous Solutions by Adsorption onto Organo-kaolin

  • Sayed Ahmed, S.A.
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.305-313
    • /
    • 2009
  • In this study, the adsorption of toxic pollutants onto cetyltrimethylammonium kaolin (CTAB-Kaolin) is investigated. The organo-kaolin is synthesized by exchanging cetyltrimethylammonium cations (CTAB) with inorganic ions on the surface of kaolin. The chemical analysis, the structural and textural properties of kaolin and CTAB-kaolin were investigated using elemental analysis, FTIR, SEM and adsorption of nitrogen at $-196^{\circ}C$. The kinetic adsorption and adsorption capacity of the organo-kaolin towards o-xylene, phenol and Cu(II) ion from aqueous solution was investigated. The kinetic adsorption data of o-xylene, phenol and Cu(II) are in agreement with a second order model. The equilibrium adsorption data were found to fit Langmuir equation. The uptake of o-xylene and phenol from their aqueous solution by kaolin, CTAB-kaolin and activated carbon proceed via physisorption. The removal of Cu(II) ion from water depends on the surface properties of the adsorbent. Onto kaolin, the Cu(II) ions are adsorbed through cation exchange with $Na^+$. For CTAB-kaolin, Cu(II) ions are mainly adsorbed via electrostatic attraction with the counter ions in the electric double layer ($Br^-$), via ion pairing, Cu(II) ions removal by the activated carbon is probably related to the carbon-oxygen groups particularly those of acid type. The adsorption capacities of CTAB-kaolin for the investigated adsorbates are considerably higher compared with those of unmodified kaolin. However, the adsorption capacities of the activated carbons are by far higher than those determined for CTAB-kaolin.