• Title/Summary/Keyword: counter current distribution

Search Result 56, Processing Time 0.03 seconds

Study of the RBTRAN Code for Upper Plenum Analysis in Very Small LOCA (매우 작은 규모의 LOCA에 있어서 Upper Plenum분석을 위한 RETRAN코드의 연구)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.125-130
    • /
    • 1984
  • In the application of the RETRAN code to the analysis of very small LOCA one of main concerns is placed on use of the bubble rise model in the upper plenum, because the bubble rise model nay cause a numerical divergence problem and coefficients used to describe it are based on experimental results of large LOCA. In order to solve this problem, a method, which enables us to predict the mixture level in the upper plenum without use of the bubble rise model, was proposed. For this method the local void distribution in the core and upper plenum was derived by using a simplified slip model. It was shown that results predicted from the derived equation are in excellent agreement with experimental data. Additionally it was found that local void in the upper plenum has a uniform distribution unlike a linear distribution in large LOCA. Communication between the upper plenum and upper head was investigated. By introducing the concept of Taylor instability, it was proved that counter-current Hon between them is possible.

  • PDF

The Analysis and Counter-Measure for Signal Distortion of the Searching Radar Due to Ship Structures (함정 구조물에 의한 탐색 레이다 신호 왜곡 현상 분석 및 대책)

  • Song, Ki-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.625-630
    • /
    • 2009
  • In this paper, we introduce the analysis and counter-measure of signal distortion of search radar equipped on the ship. Using ShipEDF program, the search radar's main antenna and ship structures are modeled in the view of electromagnetism. Ray tracing method is used for analysis of the search radar's radiation patterns in free space and ship condition. From analyzed radiation patterns, we can conclude that the search radar's signal distortion is due to radiation pattern distortion. We also analyze the surface current distribution of the mast to propose the counter-measure to reduce electro-magnetic field reflection of mast.

A Counter-Countermeasure using Signal Distribution Characteristics between Two Bands in a Crossed Array Tracker (십자 배열 탐색기에서의 두 대역간 신호 분포 특성을 이용한 반대응 능력)

  • 이석한;오정수;서동선;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4A
    • /
    • pp.316-323
    • /
    • 2002
  • In this paper, we propose a counter-countermeasure (CCM) in a crossed array tracker for efficient target tracking under countermeasures (CM) operated by a target. The proposed CCM adepts two detection bands and uses the signal distribution characteristics to discriminate between the target and the CMs. To avoid wrong detection of a target position due to missing signal pulses, it predicts current target position based on previous target position. To evaluate the performance of the proposed CCM in a crossed array tracker, we perform numerical simulations for target signal extraction and target tracking under various conditions. The simulation results show that the proposed CCM removes the CM effect well and tracks the target efficiently.

Performance and Thermal-Flow Characteristics in a Planar Type Solid oxide Fuel Cell with Single Channel and Multi-Channel (단일채널 및 다채널을 포함한 평판형 고체산화물연료전지의 열유동 해석 및 성능평가)

  • Ahn, Hyo-Jung;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1033-1041
    • /
    • 2007
  • This paper studied the characteristics of performance and temperature in a unit cell of a planar type SOFC under various conditions by employing computational fluid dynamics (CFD). In order to derive thermal stress distribution and performance characteristics, the 3-D model simulation for a single channel was performed in various conditions which include interconnect materials $(LaCrO_3/AISI430)$, gas flow direction (co-flow/counter-flow) and inlet temperature (923 K/1173 K). From these results of a single channel, the most effective conditions were applied to the unit stack with multi-channel and the temperature distribution is displayed. Considering both thermal stress and performance, the best combination is 923 K inlet temperature, counter-flow and interconnector of stainless steel. As the end results, flow, thermal and current density distributions were found in the model with multi-channel applied to the best combination and were concentrated in the middle of channels than in the edge.

Numerical Study on the Arrangement of AIG for Determining the $NH_3$ Concentration Distribution in the Package Type of Small Scale SCR System (패키지형 소형 SCR 시스템 내 $NH_3$ 농도분포 제어를 위한 AIG의 배치에 관한 전산해석적 연구)

  • Park, Seon-Mi;Chang, Hyuk-Sang;Zhao, Tong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.368-377
    • /
    • 2011
  • A package type of SCR (selective catalytic reduction) system that was proposed for removing the $NO_x$ found in flue gas from the small scale of air pollution sources was evaluated. The efficiency of the SCR system is determined by the proper utilization of catalytic media installed inside of the system, and the proper distribution of flow velocity and $NH_3$ concentration in the flue gas is a crucial factor for using the catalytic media. In this study, the distributions of $NH_3$ concentration were estimated under the various arrays and shapes of AIG at the given gas flow condition. The value of RMS (%) in $NH_3$ concentration is 95.3% at co-current flow (at $0^{\circ}$) injection but it is 90.1% at the condition of counter-current flow (at $120^{\circ}$) condition, which implies the counter-current injection is more favorable. By rearranging the $NH_3$ injection flow rates based on the distribution of velocity and $NH_3$ distribution in basic calculation, the value of RMS (%) in $NH_3$ concentration was reduced to 62.8%. The enhanced effect of $NH_3$ mixing by the combined effect of arrays and shapes are complied in the study.

The formation of nano pillar arrays with p-type silicon using electrochemical etching (Electrochemical etching을 이용한 P형 실리콘에서의 nano pillar arrays 형성)

  • Ryu, Han-Hee;Kong, Seong-Ho;Kim, Jae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1529_1530
    • /
    • 2009
  • The process conditions for fabricating p-type silicon pillars were optimized by controlling current density, bath temperature. To get best process flexibility for pillar arrays formation, three factors affecting pillar formation were changed. First, the solution bath was designed to keep constant temperature during the experiment irrespective of external temperature. Second, the counter Pt electrode was changed from rod type to mesh to obtain uniform distribution of current density. Third, Cr-Cu alloy electrode instead of Cu was used to increase electrode current density.

  • PDF

A Numerical study on current density and temperature distributions of IT-SOFC (IT-SOFC의 전류밀도 및 온도분포에 관한 수치해석 연구)

  • Sohn, Sang-Ho;Lee, Kyu-Jin;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3067-3072
    • /
    • 2008
  • A two-dimensional model for anode-supported IT-SOFCs is proposed in order to accurately consider the heat and mass transport processes with a fully-developed axial velocity profile in channel flow. A comprehensive micro model is employed to describe the electrochemical reaction in anode and cathode of SOFCs. This paper investigates the effects of operational parameters (inlet temperature, the amount of flow rate, and air flow rate) including flow configurations (co-flow and counter-flow) on the current density and temperature distributions in the IT-SOFCs.

  • PDF

A Study on the Performance Estimation and Shape Design of a Counter-Rotating Tidal Current Turbine (상반전 조류발전 터빈의 형상설계 및 성능예측에 관한 연구)

  • Kim, Mun-Oh;Kim, You-Taek;Lee, Young-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.586-592
    • /
    • 2014
  • This study looks at the design of a 100 kW blade geometry for a horizontal marine current turbine using the Blade Element Momentum Theory (BEMT) and by using (CFD), the power output, performance and characteristics of the the fluid flow over the blade is estimated. Three basic airfoils; FFA-W3-301, DU-93-W210 and NACA-63418, are used along the blade span and The distribution of the chord length and twist angles along the blade are obtained from the hydrodynamic optimization procedure. The power coefficient curve shows maximum peak at the rated tip speed ratio of 5.17, and the maximum power reaches about 101.82 kW at the power coefficient of 0.495.

Double quench and fault current limiting characteristics due to winding ratio of transformer type SFCL with third winding

  • Han, Tae-Hee;Ko, Seok-Cheol;Lim, Sung-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.38-42
    • /
    • 2019
  • To protect the power systems from fault current, the rated protective equipment should be installed. However growth of power system scale and concentration of loads caused the large fault current in power transmission system and distribution system. And capacities of installed protective equipment have been exceeded the due to increase of fault current. This increase is not temporary phenomenon but will be steadily as long as the industry develops. The power system need a counter measurement for safety, so superconducting fault current limiter (SFCL) has been received attention as an effective solutions to reduce the fault current. For the above reasons various type SFCL is studied recently. In this paper, the operational characteristics and power burden of trigger type SFCL is studied. The trigger type SFCL has been used for real system research in many countries. And another trigger type SFCL (double quench trigger type SFCL) is also studied. For this paper, short circuit test is performed.

Analysis on operation characteristics and power burdens of the double quench trigger type SFCLs

  • Lim, Seung-Taek;Lim, Sung-Hun;Han, Tae-Hee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.33-37
    • /
    • 2017
  • To protect the power systems from fault current, the rated protective equipment should be installed. However growth of power system scale and concentration of loads caused the large fault current in power transmission system and distribution system. The capacities of installed protective equipment have been exceeded the due to increase of fault current. This increase is not temporary phenomenon but will be steadily as long as the industry develops. The power system operator need a counter-measurement for safety, so superconducting fault current limiter (SFCL) has been received attention as effective solutions to reduce the fault current. For the above reasons various type SFCLs have been studied recently. In this paper, operation characteristics and power burden of trigger type SFCL is studied. The trigger type SFCL has been used for real system research in many countries. Another trigger type SFCL (double quench trigger type SFCL) is also studied. For this paper, short circuit test is performed.