• 제목/요약/키워드: cotransport$

검색결과 21건 처리시간 0.026초

Changes in Phosphate Transporter Activity Evaluated by Phosphonoformic Acid Binding in Cadmium-Exposed Renal Brush-Border Membranes

  • Chung, Jin-Mo;Ahn, Do-Whan;Kim, Kyoung-Ryong;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권5호
    • /
    • pp.513-519
    • /
    • 1999
  • Direct exposure of renal tubular brush-border membranes (BBM) to free cadmium (Cd) causes a reduction in phosphate (Pi) transport capacity. Biochemical mechanism of this reduction was investigated in the present study. Renal proximal tubular brush-border membrane vesicles (BBMV) were isolated from rabbit kidney outer cortex by Mg precipitation method. Vesicles were exposed to $50{\sim}200\;{\mu}M\;CdCl_2$ for 30 min, then the phosphate transporter activity was determined. The range of Cd concentration employed in this study was comparable to that of the unbound Cd documented in renal cortical tissues of Cd-exposed animals at the time of onset of renal dysfunction. The rate of sodium-dependent phosphate transport $(Na^+-Pi\;cotransport)$ by BBMV was determined by $^{32}P-Iabeled$ inorganic phosphate uptake, and the number of $Na^+-Pi$ cotransporters in the BBM was assessed by Pi-protectable $^{14}C-labeled$ phosphonoformic acid $([^{14}C]PFA)$ binding. The exposure of BBMV to Cd decreased the $Na^+-Pi$ cotransport activity in proportion to the Cd concentration in the preincubation medium, but it showed no apparent effect on the Pi-protectable PFA binding. These results indicate that an interaction of renal BBM with free Cd induces a reduction in $Na^+-Pi$ cotransport activity without altering the carrier density in the membrane. This, in turn, suggest that the suppression of phosphate transport capacity $(V_{max})$ observed in Cd-treated renal BBM is due to a reduction in $Na^+-Pi$ translocation by existing carriers, possibly by Cd-induced fall in membrane fluidity.

  • PDF

Involvement of K+-Cl--Cotransport in the Apigenin-Induced Generation of Reactive Oxygen Species in IMR-32 Human Neuroblastoma Cells

  • Kim, Min-Hoo;Jeong, Choon-Sik;Yoon, Hye-Ran;Kim, Gun-Hee;Lee, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • 제14권3호
    • /
    • pp.137-142
    • /
    • 2006
  • Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. In this study we investigated the role of apigenin in the production of reactive oxygen species (ROS) through the modulation of activity of $K^+-Cl^-$-cotransport (KCC) in IMR-32 human neuroblastoma cells. Apigenin induced $Cl^-$-dependent $K^+$ efflux, a hallmark of KCC activity, which was markedly prevented by different kinds of KCC inhibitors (calyculin-A, genistein and $BaCl_2$). These results indicate that KCC is functionally present, and activated by apigenin in the IMR-32 cells. Treatment with apigenin also induced a sustained increase in the level of intracellular ROS. The KCC inhibitors also significantly inhibited the apigenin-induced ROS generation. Taken together, these results suggest that apigenin can modulate ROS generation through the activation of a membrane ion transporter, KCC. These results further suggest that the alteration of KCC activity may play a role in the mechanism of degenerative diseases and/or carcinogenesis in neuronal tissues through the regulation of ROS production.

광합성산물의 아포플라스트 체관부적재 기작 (Apoplastic Phloem Loading of Photoassimilate)

  • 김성문;허장현;한대성
    • 한국잡초학회지
    • /
    • 제17권4호
    • /
    • pp.345-361
    • /
    • 1997
  • Photoassimilates translocate from regions of carbohydrate synthensis(source) to regions of carbohydrate utilization or storage(sink). In the source, assimilate loads into the phloem for long-distance transport. Current evidence suggests that there are twig loading mechanisms : one involves assimilate transfer via the apoplasm and then load into the phloem by carrier-mediated proton-sucrose cotransport, while the other involves movement through the continuous symplastic connections between the mesophyll cells and the phloem. Inspite of problems associated with the interpretation of experiments, the evidence for apoplastic loading remains convincing because the apoplastic loading systems explains well the observed accumulation capacity arid the selectivity of assimilate uptake by tile phloem.

  • PDF

Arachidonic Acid Activates $K^+$-$Cl^-$-cotransport in HepG2 Human Hepatoblastoma Cells

  • Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.401-408
    • /
    • 2009
  • $K^+$-$Cl^-$-cotransport (KCC) has been reported to have various cellular functions, including proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that control the activity of KCC are currently not well understood. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signal in the regulatory mechanism of KCC activity. Exogenous application of AA significantly induced $K^+$ efflux in a dose-dependent manner, which was completely blocked by R-(+)-[2-n-butyl-6,7 -dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1Hinden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activatorinduced $K^+$ efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calciumindependent $PLA_2$ ($iPLA_2$), whereas it was not significantly altered by arachidonyl trifluoromethylketone ($AACOCF_3$) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. NEM increased AA liberation in a doseand time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM-induced ROS generation was significantly reduced by DPI and BEL, whereas $AACOCF_3$ and BPB did not have an influence. The NEM-induced KCC activation and ROS production was not significantly affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and activated the KCC. Collectively, these results suggest that $iPLA_2$-AA signal may be essentially involved in the mechanism of ROS-mediated KCC activation in HepG2 cells.

Arachidonic Acid Mediates Apoptosis Induced by N-Ethylmaleimide in HepG2 Human Hepatoblastoma Cells

  • Lee, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • 제17권4호
    • /
    • pp.379-387
    • /
    • 2009
  • We have previously reported that N-ethylmaleimide (NEM) induces apoptosis through activation of $K^+$, $Cl^-$-cotransport (KCC) in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signals in the mechanism of the NEM-induced apoptosis. In these experiments we used arachidonyl trifluoromethylketone ($AACOCF_3$), bromoenol lactone (BEL) and p-bromophenacyl bromide (BPB) as inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$), the calcium-independent $PLA_2$ ($iPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. BEL significantly inhibited the NEM-induced apoptosis, whereas $AACOCF_3$ and BPB did not. NEM increased AA liberation in a dose-dependent manner, which was markedly prevented only by BEL. In addition AA by itself induced $K^+$ efflux, a hallmark of KCC activation, which was comparable to that of NEM. The NEM-induced apoptosis was not significantly altered by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with AA or 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, significantly induced apoptosis. Collectively, these results suggest that AA liberated through activation of $iPLA_2$ may mediate the NEMinduced apoptosis in HepG2 cells.

B16 흑색종세포에서 아피제닌에 의한 멜라닌 합성에 미치는 NADPH 산화효소-유래 활성산소종의 역할 (Role of NADPH Oxidase-mediated Generation of Reactive Oxygen Species in the Apigenin-induced Melanogenesis in B16 Melanoma Cells)

  • 이용수
    • 약학회지
    • /
    • 제55권6호
    • /
    • pp.485-491
    • /
    • 2011
  • Previously, we have reported that apigenin, a natural flavonoid found in a variety of vegetables and fruits, stimulated melanogenesis through the activation of $K^+-Cl^-$-cotransport (KCC) in B16 melanoma cells. In this study we investigated the possible involvement of reactive oxygen species (ROS) in the mechanism of apigenin-induced melanogenesis in B16 cells. Apigenin elevated intracellular ROS level in a dose-dependent manner. Treatment with various inhibitors of NADPH oxidase, diphenylene iodonium (DPI), apocynin (Apo) and neopterine (NP) significantly inhibited both the generation of ROS and melanogenesis induced by apigenin. In addition these inhibitors profoundly inhibited apigenin-induced $Cl^-$-dependent $K^+$ efflux, a hallmark of KCC activity. However, the apigenin-induced ROS generation was not significantly affected by treatment with a specific KCC inhibitor R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid (DIOA). These results indicate that the ROS production may be a upstream regulator of the apigenin-induced KCC stimulation, and in turn, melanogenesis in the B16 cells. Taken together, these results suggest that the NADPH oxidase-mediated ROS production may play an important role in the apigenin-induced melanogenesis in B16 cells. These results further suggest that NADPH oxidase may be a good target for the management of hyperpigmentation disorders.

B16 흑색종세포에서 아피제닌에 의한 멜라닌 합성 촉진효과에 미치는 칼륨-염소이온수송체의 역할 (Role of $K^+$-$Cl^-$-cotransporter in the Apigenin-induced Stimulation of Melanogenesis in B16 Melanoma Cells)

  • 이용수
    • 약학회지
    • /
    • 제52권6호
    • /
    • pp.500-506
    • /
    • 2008
  • Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. In this study we found that apigenin stimulated melanin synthesis in a dose-dependent manner in B16 murine melanoma cells. Since in our previous study $K^+$-$Cl^-$-cotransport (KCC) has been shown to mediate the mechanism of action of apigenin in neuronal cells, we further investigated the role of KCC in the melanogenesis-stimulating effect of apigenin in B16 cells. At nontoxic concentrations apigenin induced $Cl^-$-dependent $K^+$ efflux, a hallmark of KCC activity, which was markedly prevented by a specific KCC inhibitor R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid (DIOA). These results indicate that KCC is functionally present, and activated by apigenin in the B16 cells. In addition, the apigenin-induced stimulation of melanogenesis was also significantly inhibited by DIOA. NEthylmaleimide (NEM), a known KCC activator, induced $Cl^-$ efflux and stimulated melanogenesis in a concentration-dependent fashion. Both effects of NEM were significantly inhibited by DIOA. Taken together, these results suggest that apigenin can modulate melanogenesis through the activation of a membrane ion transporter, KCC in B16 cells. These results further suggest that apigenin may be a good candidate in the therapeutic strategy for hypopigmentation disorders, such as vitiligo.

Effects of green tea or $Sasa$ $quelpaertensis$ bamboo leaves on plasma and liver lipids, erythrocyte Na efflux, and platelet aggregation in ovariectomized rats

  • Ryou, Sung-Hee;Kang, Min-Sook;Kim, Kyu-Il;Kang, Young-Hee;Kang, Jung-Sook
    • Nutrition Research and Practice
    • /
    • 제6권2호
    • /
    • pp.106-112
    • /
    • 2012
  • This study was conducted to investigate the effects of $Sasa$ $quelpaertensis$ bamboo and green tea on plasma and liver lipids, platelet aggregation, and erythrocyte membrane Na channels in ovariectomized (OVX) rats. Thirty female rats were OVX, and ten female rats were sham-operated at the age of 6 weeks. The rats were divided into four groups at the age of 10 weeks and fed the experiment diets: sham-control, OVX-control, OVX-bamboo leaves (10%), or OVX-green tea leaves (10%) for four weeks. Final body weight increased significantly in the OVX groups compared with that in the sham-control, whereas body weight in the OVX-green tea group decreased significantly compared with that in the OVX-control ($P$ < 0.01). High density lipoprotein (HDL)-cholesterol level decreased in all OVX groups compared with that in the sham-control rats ($P$ < 0.05) but without a difference in plasma total cholesterol. Plasma triglycerides in the OVX-green tea group were significantly lower than those in the sham-control or OVX-control group ($P$ < 0.05). Liver triglycerides increased significantly in the OVX-control compared with those in the sham-control ($P$ < 0.01) but decreased significantly in the OVX-green tea group compared with those in the OVX-control or OVX-bamboo group ($P$ < 0.01). Platelet aggregation in both maximum and initial slope tended to be lower in all OVX rats compared with that in the sham-control rats but was not significantly different. Na-K ATPase tended to increase and Na-K cotransport tended to decrease following ovariectomy. Na-K ATPase decreased significantly in the OVX-green tea group compared with that in the OVX-control group ($P$ < 0.01), and Na-K cotransport increased significantly in the OVX-bamboo and OVX-green tea groups compared with that in the OVX-control ($P$ < 0.05). Femoral bone mineral density tended to be lower in OVX rats than that in the sham-control, whereas the green tea and bamboo leaves groups recovered bone density to some extent. The results show that ovariectomy caused an increase in body weight and liver triglycerides, and that green tea was effective for lowering body weight and triglycerides in OVX rats. Ovariectomy induced an increase in Na efflux via Na-K ATPase and a decrease in Na efflux via Na-K cotransport. Furthermore, consumption of green tea and bamboo leaves affected Na efflux channels, controlling electrolyte and body water balance.

Chlorella vulgaris의 당류 능동수송계에 미치는 칼슘 이온의 영향 (Calcium Ion Effect on the Sugar-H+ -Cotransport System in Chlorella vulgaris)

  • 조봉희
    • Journal of Plant Biology
    • /
    • 제36권4호
    • /
    • pp.321-326
    • /
    • 1993
  • Sugar uptake is accompanied with H+-substrate-symport generally. Both H+/sugar-and H+/K+ stoichiometries during the sugar-uptake have been reported to be exactly 1 : 1. This paper reports that the stoichiometries were enhanced dramatically by the addition of CaCl2 into the medium and by the high cell density of 200 $\mu$L pc/mL. The concentration of free Ca2+ ions in the cells increased significantly with cell density. It is suggested that the free Ca2+ ions are responsible for the change of stoichiometry of sugar transport system by regulation of H+ ion level of biomembrane.

  • PDF

Arachidonic Acid Liberated through Activation of $iPLA_2$ Mediates the Production of Reactive Oxygen Species and Apoptosis Induced by N-Ethylmaleimide in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.242.2-243
    • /
    • 2002
  • We have previously reported that activation of $K^{+}$-$Cl^{-}$-cotransport (KCC) by N-ethylmaleimide (NEM) induces apoptosis through generation of reactive oxygen species (ROS) in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of phospholipase $A_2$($PLA_2$)-arachidonic acid (AA) signals in the mechanism of the NEM actions. (omitted)

  • PDF