• Title/Summary/Keyword: cost segregation

Search Result 42, Processing Time 0.03 seconds

Durability assessment of self-compacting concrete with fly ash

  • Deilami, Sahar;Aslani, Farhad;Elchalakani, Mohamed
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.489-499
    • /
    • 2017
  • Self-Compacting Concrete (SCC) is a new technology capable to flow without segregation or any addition of energy which leads to efficient construction and cost savings. In this study, the effect of replacing the Ordinary Portland Cement (OPC) with Fly Ash (FA) on the strength, durability of the concrete was investigated experimentally, and carbon footprint and cost were also assessed. Four different replacement FA ratios (0%, 20%, 40% and 60%) were used to create four SCC mixes. Standard test methods were used to determine the workability, strength, and durability of the SCC mixes including resist chloride ion penetration, water permeability, water absorption, and initial surface absorption. The axial cube compressive strength tests were performed on the SCC mixes at 1, 7, 14, 28 and 35 days. Replacing the OPC with FA had a significant positive impact on chloride iron penetration resistance and water absorption but had a considerable negative impact on the compressive strength. The SCC mix with 60% FA had 36.7% and 15.8% enhancement in the resistance to chloride ion penetration and water absorption, respectively. Evaluation of the carbon footprint and the cost of each SCC mixes showed the $CO_2$ emissions mixes 1, 2, 3 and 4 were significantly reduced by increasing the FA content from 0% to 60%. Compared with the control mix, the cost of all mixes increased when the FA content increased, but no significant differences were seen between the estimated costs of all four mixes.

Muti-Objective Design Optimization of Self-Compacting Concrete using CCD Experimental Design and Weighted Multiple Objectives Considering Cost-Effectiveness (비용효율을 고려한 자기 충전형 콘크리트의 CCD 실험설계법 및 가중 다목적성 기반 다목적설계최적화(MODO))

  • Do, Jeongyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.26-38
    • /
    • 2020
  • Mixture design of self-compacting concrete is a typical multi-criteria decision making problem and conventional mixture designs are based on the low level engineering method like trials and errors through iteration method to satisfy the various requirements. This study concerns with performing the straightforward multiobjective design optimization of economic SCC mixture considering relative importances of the various requirements and cost-effectives of SCC. Total five requirements of 28day compressive strength, filling ability, segregation stability, material cost and mass were taken into consideration to prepare the objective function to be formulated in form of the weighted-multiobjective mixture design optimization problem. Economic SCC mixture computational design can be given in a rational way which considering material costs and the relative importances of the requiremets and from the result of this study it is expected that the development of SCC mixtue computational design and the consequent univeral concrete material design optimization methodology can be advanced.

Spatial distribution patterns of old-growth forest of dioecious tree Torreya nucifera in rocky Gotjawal terrain of Jeju Island, South Korea

  • Shin, Sookyung;Lee, Sang Gil;Kang, Hyesoon
    • Journal of Ecology and Environment
    • /
    • v.41 no.8
    • /
    • pp.223-234
    • /
    • 2017
  • Background: Spatial structure of plants in a population reflects complex interactions of ecological and evolutionary processes. For dioecious plants, differences in reproduction cost between sexes and sizes might affect their spatial distribution. Abiotic heterogeneity may also affect adaptation activities, and result in a unique spatial structure of the population. Thus, we examined sex- and size-related spatial distributions of old-growth forest of dioecious tree Torreya nucifera in extremely heterogeneous Gotjawal terrain of Jeju Island, South Korea. Methods: We generated a database of location, sex, and size (DBH) of T. nucifera trees for each quadrat ($160{\times}300m$) in each of the three sites previously defined (quadrat A, B, C in Site I, II, and III, respectively). T. nucifera trees were categorized into eight groups based on sex (males vs. females), size (small vs. large trees), and sex by size (small vs. large males, and small vs. large females) for spatial point pattern analysis. Univariate and bivariate spatial analyses were conducted. Results: Univariate spatial analysis showed that spatial patterns of T. nucifera trees differed among the three quadrats. In quadrat A, individual trees showed random distribution at all scales regardless of sex and size groups. When assessing univariate patterns for sex by size groups in quadrat B, small males and small females were distributed randomly at all scales whereas large males and large females were clumped. All groups in quadrat C were clustered at short distances but the pattern changed as distance was increased. Bivariate spatial analyses testing the association between sex and size groups showed that spatial segregation occurred only in quadrat C. Males and females were spatially independent at all scales. However, after controlling for size, males and females were spatially separated. Conclusions: Diverse spatial patterns of T. nucifera trees across the three sites within the Torreya Forest imply that adaptive explanations are not sufficient for understanding spatial structure in this old-growth forest. If so, the role of Gotjawal terrain in terms of creating extremely diverse microhabitats and subsequently stochastic processes of survival and mortality of trees, both of which ultimately determine spatial patterns, needs to be further examined.

Engineering Properties of Liquefied Stabilized Soil by Contents of Humic Acid (휴믹산 함유량에 따른 유동화 처리토의 공학적 특성)

  • Han, Sang-Jae;Ahn, Dong-Wook;Park, Jea-Man;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.229-237
    • /
    • 2009
  • A conventional way of backfilling has used sand or in-situ soil. It not only requires substantial amount of time and cost but also makes it particularly difficult to fill the bottom part and small cracks of a pipe. To address the problem with the conventional method of compaction, liquefied stabilized soil was proposed as an alternative because it reuses in-situ soil which can ensure sand supply while adjusting flowability and strength of the soil with design of mix proportion. With an aim to identify the mixing properties of liquefied stabilized soil depending on the organic content of in-situ soil, this study conducted indoor tests of material segregation, flowability, strength, and permeability by changing humic acid content of the soil. The results revealed that material segregation and flowability increased proportionally while strength decreased with the increased amount of humic acid. In the mean time, permeability of liquefied stabilized soil wasn't affected by organic content.

A Fundamental Study on the Improvement of Superplasticizer for Manufacturing the High Quality Flowing Concrete in the Field (고품질 현장 유동화 콘크리트 제조를 위한 유동화제 성능 개선에 관한 기초적 연구)

  • 강의영;한만철;오선교;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.33-36
    • /
    • 1998
  • Generally, the base concrete for manufacturing the flowing concrete has to increase the fine aggregate content or adjust the fines content prevent the concrete from segeration, However, it may not only increase the cost, but cause the inconvenience in production of base concrete. In this paper, the experiments is performed on the superplasticizer which is used for base concrete by mixing viscosity agents and AE admixtures. According to the results, it shows that it is possible to manufacture a flowing, non segregation, high durability and economical concrete in the field without increasing the fine aggregate content of base concrete, when the superplasticizer are mixed with viscosity agents and AE admixtures in an appropriate proportion.

  • PDF

Drying Shrinkage and Carbonation of High Strength Lightweight Self-Compacting Concrete (고강도 경량 자기충전콘크리트의 건조수축 및 중성화 특성)

  • Choi, Wook;Choi, Yun-Wang;Kim, Yong-Jic;Kang, Hyun-Jin;Cho, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.77-80
    • /
    • 2005
  • Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied to structures such as long-span bridge and high rise buildings. However, the lightweight concrete requires specific mix design method that is quite different from the typical concrete, since using the typical mix method would give rise the material segregation as well as lower the strength by the reduced weight of the aggregate. In order to avoid such problems, it is recommended to apply the mix design method of self-compacting concrete for the lightweight concrete. Experimental tests were performed as such compressive strength, dry shrinkage and carbonation of high strength lightweight self-compacting concrete.

  • PDF

Development Strategies of The Hanwoo [Korean Native Cattle] Industry (한우산업의 발전전략)

  • Kim Jin Suk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1998.10a
    • /
    • pp.68-111
    • /
    • 1998
  • The structure of the Hanwoo (Korean Native Cattle) Industry remains very weak and vulnerable to the WTO/IMF system. Considering that the majority of cattle farmers are small sized, and that marketing systems are outdated and inefficient, rapid expansion of lower priced beef imports by WTO system and rapid increasing of production costs by IMF system would lead to the deprivation of a regular source of farm income and threaten the stability of rural life. Accordingly, the Hanwoo industry should be expanded in accordance with progress in the implementation of (1) programs for the structural adjustment and (2) measures to compensate for the loss. Efforts for lowering major production factor costs needs to continue, In order to increase the supply of calves at low cost, the programs of collective cow-calf farms should be expanded, thereby reducing the cost of calf purchase, which constitutes the largest share of Hanwoo production cost. Also, feedlot operations should be encouraged for small herd farms in order to achieve a substantial saving in beef production costs by integrated operations from calf production to cattle fattening. A substantial saving would also be made by collective purchase and distribution of various inputs through the cooperatives' channels. Extension services should be strengthened for cattle farm management, cattle care and feeding, prevention of cattle disease, etc. In order to minimize cash outlays for commercial mixed feeds, utilization of far by-products as feeds should be enhanced and production of forage crops productive of resources, such as land and rural labor, during the farm o(f-season, needs to be encouraged. Also, technological development for enhancing the nutritional value of farm by-products should be encouraged. Measures for successful segregation of the Hanwoo beef market should be implemented, thereby enhancing incentive for quality beef producers and protecting consumers willing to pay higher price for quality beef. For development of the Hanwoo industry, a considerable time frame would be required in order for (1) small livestock farmers to make a successful adjustment by staying in the enterprise and achieving increased price efficiency (2) livestock farmers to acquire know-how for producing quality Hanwoo beef, (3) the ongoing Government policy of enhancing price-quality competitiveness, and for improving the quality Hanwoo beef marketing to take root. (4) consumers to increase their ability to distinguish meat quality, and others.

  • PDF

Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC

  • Djamila, Boukhelkhal;Othmane, Boukendakdji;Said, Kenai;El-Hadj, Kadri
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.69-85
    • /
    • 2018
  • In order to provide sufficient stability and resistance against bleeding and segregation during transportation and placing, mineral admixtures are often used in self-compacting concrete mixes (SCC). These fine materials also contribute to reducing the construction cost and the consumption of natural resources. Many studies have confirmed the benefits of these mineral admixtures on properties of SCC in standard curing conditions. However, there are few published reports regarding their effects at elevated curing temperatures. The main objective of this study is to investigate the effect of three different mineral admixtures namely limestone powder (LP), granulated blast furnace slag (GS) and natural pozzolana (PZ) on mechanical properties and porosity of SCC when exposed to different curing temperatures (20, 40, 60 and $80^{\circ}C$). The level of substitution of cement by mineral admixture was fixed at 15%. The results showed that increasing curing temperature causes an improvement in performance at an early age without penalizing its long-term properties. However the temperature of $40^{\circ}C$ is considered the optimal curing temperature to make economical and high performance SCC. On the other hand, GS is the most suitable mineral admixture for SCC under elevated curing temperature.

Navigating the landscape of clinical genetic testing: insights and challenges in rare disease diagnostics

  • Soo Yeon Kim
    • Childhood Kidney Diseases
    • /
    • v.28 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • With the rapid evolution of diagnostic tools, particularly next-generation sequencing, the identification of genetic diseases, predominantly those with pediatric-onset, has significantly advanced. However, this progress presents challenges that span from selecting appropriate tests to the final interpretation of results. This review examines various genetic testing methodologies, each with specific indications and characteristics, emphasizing the importance of selecting the appropriate genetic test in clinical practice, taking into account factors like detection range, cost, turnaround time, and specificity of the clinical diagnosis. Interpretation of variants has become more challenging, often requiring further validation and significant resource allocation. Laboratories primarily classify variants based on the American College of Medical Genetics and Genomics and the Association for Clinical Genomic Science guidelines, however, this process has limitations. This review underscores the critical role of clinicians in matching patient phenotypes with reported genes/variants and considering additional factors such as variable expressivity, disease pleiotropy, and incomplete penetrance. These considerations should be aligned with specific gene-disease characteristics and segregation results based on an extended pedigree. In conclusion, this review aims to enhance understanding of the complexities of clinical genetic testing, advocating for a multidisciplinary approach to ensure accurate diagnosis and effective management of rare genetic diseases.

Study on Water Reducer Performance for Efficient Fluidity Development and Securing Robustness of Normal Strength Range Concrete (일반강도 콘크리트의 효과적인 유동성 증진 및 품질안정성 확보를 위한 감수제 성능에 대한 연구)

  • Son, Bae-Geun;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.429-435
    • /
    • 2017
  • The aim of the research is, for normal strength range concrete mixture, to evaluate the fluidity development and robustness of the mixture depending on various water reducers. Although a usage of water reducer has been essential to make a concrete under the current conditions of worsen aggregate quality, selection of appropriate performance of water reducer is significant. Hence, in this research, regarding the normal strength range mortar, three different performance of water reducers were evaluated in aspects of securing fluidity, and robustness, rheological behaviors. Additionally, for the concrete mixture, the fluidity change was evaluated depending on unit water content for each different water reducer, and the water reducing performance with manufacturing cost was compared and analyzed. By the result of this research, it is expected to provide a case of determining appropriate kind of water reducer and to contribute on conditions of securing sufficient fluidity with stable quality and economical advantage.